• Title/Summary/Keyword: Complex Modal Analysis

Search Result 174, Processing Time 0.024 seconds

Damping Enhancement of Hingeless Rotor System Using Viscoelastic Material (점탄성 재료를 이용한 무힌지 로터 감쇠 증대)

  • Kim, Do-Hyung;Ko, Eun-Hee;Song, Keun-Woong;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.637-640
    • /
    • 2004
  • Structural damping enhancement of composite flexures and aeroelastic stability of a hingeless rotor system are investigated. Constrained layer damping (CLD) treatments are applied in order to increase structural damping of flexures. Material damping property of viscoelastic layer is modelled as complex modulus. Modal analysis of composite flexures with attached viscoelastic layers and constraining layers are performed using MSC/NASTRAN and the effects of CLD treatments are verified with the modal test results. The composite flexures with CLD are applied to a 4-bladed, 2-meter diameter, Froude-scaled, soft-in-plane hingeless rotor system. The aeroelastic stability is tested at hovering condition and the effects of CLD are investigated. It is shown that the CLD treatment effectively enhance the aeroelastic stability at hover.

  • PDF

Analysis of Voice Parameters on Different Phonatory Tasks using Multi-Channel Phonatory Function Analyzer in Healthy Adults (다채널 음성분석장치를 이용한 정상 성인에서의 발성 방식에 따른 음성변수 분석)

  • 성명훈;이상준;김광현;노종렬;권택균;이강진;박광석;최종민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.13 no.2
    • /
    • pp.132-138
    • /
    • 2002
  • Background and Objectives : The complex physiologic structure of the larynx can vibrate in three or more different ways that yield acuostically and perceptually distinct vocal quality. The purpose of this study is to examine the normal range of voice parameters in Multi-Channel Phonatory Function Analyzer and investigate the difference of voice parameters according to the phonatory patterns. Materials and Methods : Forty normal adult speakers (20 men and 20 women) with age ranging from third to forth decades pronounce low, comfortable, and high tone /a/ ; comfortable tone /${\ae}$/, /i/, /o/, and /u/ : fry, falsetto. Voice was analyzed by Newly developed multi-channel phonatory function analyzer. Results : The normal range of voice parameters in this system was similar to the existing data. Fry shows high jitter and falsetto low SQ. Fry and falsetto show low OQ in men but no difference in women. Jitter, OQ and SQ were different between men and women in modal register, whereas there was no gender difference in fry and falsetto. In frequency magnitude spectrum and EGG, modal register, fry and falsetto have distinguishing pattern. Conclusions : Modal register, fry and falsetto are distinguishable in voice parameters and show different vibratory patterns.

  • PDF

Seismic Response Prediction of a Structure Using Experimental Modal Parameters from Impact Tests (충격시험에 의한 실험모드특성을 이용한 구조물의 지진응답 예측)

  • Cho, Sung-Gook;Joe, Yang-Hee;So, Gi-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • An in-cabinet response spectrum should be generated to perform the seismic qualification of devices and instruments mounted inside safety-related electrical equipment installed in nuclear power plants. The response spectrum is available by obtaining accurate seismic responses at the device mounting location of the cabinet. The dynamic behavior of most of electrical equipment may not be easily analyzed due to their complex mass and stiffness distributions. Considering these facts, this study proposes a procedure to estimate the seismic responses of a structure by a combination of a test and subsequent analysis. This technique firstly constructs the modal equations of the structure by using the experiment modal parameters obtained from the impact test. Then the seismic responses of the structure may be calculated by a mode superposition method. A simple steel frame structure was fabricated as a specimen for the validation of the proposed method. The seismic responses of the specimen were estimated by using the proposed technique and compared with the measurements obtained from the shaking table tests. The study results show that it is possible to accurately estimate the seismic response of the structure by using the experimental modal parameters obtained from the impact test.

A Study on the Shock Analysis of the Multi-Function Console According to the Shock Response Spectrum Requirements of the Elastic Platform (탄성플랫폼 충격응답 스펙트럼 기준에 따른 다기능콘솔 충격해석 연구)

  • Park, Jae Hoon;Kim, Won Hyung;Kim, Hyun Sil;Choi, Young Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.805-811
    • /
    • 2016
  • Prior to installation in a navy ship, shipboard equipment should be qualified by shock test requirements. The multi-function console mounted on the elastic platform of the ship should also withstand given shock loads. In this study, both real shock test methods, as well as numerical computer simulations using the finite element method were used to verify structural durability under shock load conditions. First, we used domestic test facilities to perform possible shock tests, including an impact hammer test, a drop table test and a shaker shock test. Full model tests satisfying the shock response spectrum level were performed. Thereafter, an analytical model of the complex console structure was built by the finite element method. Finally, numerical results were verified by modal test results of the real product and an FEA analysis was also performed with a full model transient response analysis.

Simplified Analysis of Rectangular Liquid Storage Tanks Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 직사각형 액체저장탱크의 단순해석법)

  • Lee, Jin Ho;Cho, Jeong-Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.203-209
    • /
    • 2022
  • A simplified method for earthquake response analysis of a rectangular liquid storage tank is proposed with fluid-structure interaction considered. In order to simplify the complex three-dimensional structural behavior of a rectangular liquid storage tank, it is assumed that structural deformation does not occur in the plane parallel to the direction in which the earthquake ground motion is applied but in the plane perpendicular to the direction. The structural deformation is approximated by combining the natural modes of the simple beam and the cantilever beam. The hydrodynamic pressure, the structure's mass and stiffness, and the hydrodynamic pressure's added mass are derived by applying the Rayleigh-Ritz method. The natural frequency, structural deformation, pressure, effective mode mass, and effective mode height of the rectangular liquid storage tank are obtained. The structural displacement, hydrodynamic pressure, base shear, and overturning moment are calculated. The seismic response analysis of an example rectangular liquid storage tank is performed using the proposed simplified approach, and its accuracy is verified by comparing the results with the reference solution by the finite element method. Existing seismic design codes based on the hydrodynamic pressure in rigid liquid storage tanks are observed to produce results with significant errors that cannot be ignored.

FE model updating based on hybrid genetic algorithm and its verification on numerical bridge model

  • Jung, Dae-Sung;Kim, Chul-Young
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.667-683
    • /
    • 2009
  • FE model-based dynamic analysis has been widely used to predict the dynamic characteristics of civil structures. In a physical point of view, an FE model is unavoidably different from the actual structure as being formulated based on extremely idealized engineering drawings and design data. The conventional model updating methods such as direct method and sensitivity-based parameter estimation are not flexible for model updating of complex and large structures. Thus, it is needed to develop a model updating method applicable to complex structures without restriction. The main objective of this paper is to present the model updating method based on the hybrid genetic algorithm (HGA) by combining the genetic algorithm as global optimization method and modified Nelder-Mead's Simplex method as local optimization method. This FE model updating method using HGA does not need the derivation of derivative function related to parameters and without application of complicated inverse analysis methods. In order to allow its application on diversified and complex structures, a commercial FEA tool is adopted to exploit previously developed element library and analysis algorithms. Moreover, an output-level objective function making use of measurement and analytical results is also presented to update simultaneously the stiffness and mass of the analysis model. The numerical examples demonstrated that the proposed method based on HGA is effective for the updating of the FE model of bridge structures.

Finite Element Analysis of Vibration of HDD Disk-Spindle System with Rigid Complex Spindle and Flexible Shaft (복잡한 형상의 강체 스핀들과 유연축을 고려한 HDD 디스크-스핀들 계의 고유진동 유한요소해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.784-789
    • /
    • 2000
  • Equations of motion are derived and solved using the finite element method substructure synthesis for the disk-spindle system with rigid spindle and flexible shaft. The disk is modeled as a flexible spinning disk by Kirchhoff plate theory and von Karman nonlinear strain. The spindle supporting the flexible disk is modeled as a rigid body to consider its complex geometry. The stationary shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam, and the ball bearings are modeled as the stiffness matrix with 5 degrees of freedom. Developed theory is applied to analyze the vibration characteristics of a 3.5" HDD and a 2.5" HDD, respectively, and modal tests are performed to verify the simulation results. This paper shows that the developed theory can be effectively applied to the rotating disk-spindle system with the spindle of complex shape.

  • PDF

The Prediction of Brake Corner Module Squeal Noise Using Participation Factor Analysis (기여도 분석법을 이용한 자동차 브레이크 시스템의 스퀼 소음 예측)

  • Lee, Jong-Ghi;Lim, Hyun-Seok;Kim, Hee-Yong;Baek, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1074-1080
    • /
    • 2009
  • A method for determining the geometric stability characteristics of a brake corner module (BCM) is presented. Since disc brake "squeal" noise typically occurs at unstable resonant frequencies of a system, the likelihood of disc brake squeal for a particular design can be determined. Finite element methods are used to derive complex eigenvalue for a brake corner module. Some unstable modes calculated by finite element methods correspond to squeal noise data. Through kinetic energy participation analysis for each part of BCM, we can efficiently predict squeal noise data.

Finite element modeling of the mandible using voxel mesh method (Voxel mesh 기법을 이용한 하악골의 유한요소모델링)

  • 이은택;오택열;변창환;이병권;유용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.600-604
    • /
    • 1997
  • Knowledge of the complex biomechanical behavior of the human mandible is of great importance in various clinical situations. Various approaches can be used to evaluate the physical behavior of bone. In this study, we developed the voxel mesh program(Bionix) and generated FE models of mandible using Bionix and using handmade work and compared them with free vibration results derived from finite element analysis(FEA). The data of FE models based on DICOM File exported from Computed tomography(CT). Comparing the two models, we found a good correlation about mode type and natural frequency. The voxel based finite element mesh is a valid and accurate method to predict parameters of the complex biomechanical behavior of human mandibles.

  • PDF

Modal Characteristics of Control Element Assembly Shroud for Korean Standard Nuclear Power Plant(II : Test and Post-Test Analysis) (한국표준형 원자력발전소 제어봉집합체 보호구조물의 모우드 특성 II)

  • Jhung, Myung-Jo;Park, Keun-Bae;Song, Heuy-Gap;Choi, Suhn
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.93-102
    • /
    • 1992
  • The design of reactor internals requires the accurate vibration characteristics of each component for subsequent dynamic structural response analyses. For Korean standard nuclear power plant some modifications on the Control Element Assembly shroud from the reference design have been made, Since the shroud is complex in geometry having an array of vertical round tubes and webs in a square grid pattern, and being tied down by preloaded tie rods into position, it is planned to perform a vibration measurement program consisting of both experimental and analytical modal studies upon that component. The shroud modal testing was performed on the low frequency global survey to measure the first several modes. The analysis using the finite element model was also performed for the as-tested conditions. The natural frequencies and mode shapes from both test and analysis have been acquired and compared to be in good agreement. It is concluded that finite element model generated is good enough to be used in the design for the dynamic response analysis under various loading conditions.

  • PDF