• Title/Summary/Keyword: Complex Loading

검색결과 526건 처리시간 0.024초

Morphological multivariate analyses of Isodon excisus complex (Lamiaceae) in Korea

  • Kim, Sang-Tae;Ma, Youn-Ju
    • 식물분류학회지
    • /
    • 제41권3호
    • /
    • pp.223-229
    • /
    • 2011
  • The taxonomy of the Isodon excisus complex has been ambiguous and problematic because the morphological characters, especially characters related to the leaf distinguishing subgroups of the complex in the original descriptions, are variable. To elucidate the taxonomic structure of the I. excisus complex in Korea, 34 characters were measured from 70 OTUs representing different locations and analyzed by principal component analysis (PCA). The analysis showed that principle component axis 1, 2, 3 (PC1, PC2, PC3) represents 52.0% of the total variance and characters showing high loading values for PC1 were leaf shape, density of non-glandular hairs on the lower surface of the leaf, and characters related to the teeth of the leaf. The length of apical tooth and the angle between two widest points of the leaf were highly correlated to PC2 and PC3, respectively. Three-dimensional scatter plotting of OTUs for PC1, PC2, and PC3 axis showed that the areas of previously recognized three subgroups of I. excisus completely overlapped. Our result supported that just one taxon, I. excisus var. excisus, should be recognized in the complex at the variety level.

Effects of a Complex Exercise Program on the Distance between Knees and Balance in Individuals in their 20s with Genu Varum

  • Jeong, Beomcheol;Yoo, Kyungtae
    • 국제물리치료학회지
    • /
    • 제11권4호
    • /
    • pp.2244-2252
    • /
    • 2020
  • Background: Thera-Band, Narrow squats, Kinesiology taping helps in the reduction of loading on the knee joints. Despite the fact that the varus knee negatively affects the alignment of the lower extremities, most of the studies have analyzed each independently. Objectives: To investigate the effects of a complex exercise program consisting of elastic band exercises and squat exercises on the distance between the inner knees and balance in young adults with genu varum. Design: A cluster randomized controlled trial. Methods: The complex exercise group performed resistance exercises using an elastic band. The taping group used kinesiology tape on the vastus lateralis and biceps femoris. To select those to be included in the study, we measured the distance between the knees using digital Vernier calipers and to measure the balance ability, we used a balance training system. The data were analyzed with the independent t-test and paired t-test. Results: The study indicated a significant difference in the distance between the knees between the two groups, but no significant differences in the dynamic balance between the groups. Also, the static balance comparison between the groups according to the intervention method included the trace length, C90 area, C90 angle and velocity. There were no significant differences in the static balance between the groups. In addition, the complex exercise program was more effective than taping. Conclusion: The results of this study demonstrate that the complex exercise program and taping decrease the between both the knee and increase the balance.

Unsteady wind loading on a wall

  • Baker, C.J.
    • Wind and Structures
    • /
    • 제4권5호
    • /
    • pp.413-440
    • /
    • 2001
  • This paper presents an extensive analysis of unsteady wind loading data on a 18 m long and 2 m high wall in a rural environment, with the wind at a range of angles to the wall normal. The data is firstly analyzed using standard statistical techniques (moments of probability distributions, auto- and cross-correlations, auto- and cross-spectra etc.). The analysis is taken further using a variety of less conventional methods - conditional sampling, proper orthogonal decomposition and wavelet analysis. It is shown that, even though the geometry is simple, the nature of the unsteady flow is surprisingly complex. The fluctuating pressures on the front face of the wall are to a great extent caused by the turbulent fluctuations in the upstream flow, and reflect the oncoming flow structures. The results further suggest that there are distinct structures in the oncoming flow with a variety of scales, and that the second order quasi-steady approach can predict the pressure fluctuations quite well. The fluctuating pressures on the rear face are also influenced by the fluctuations in the oncoming turbulence, but also by unsteady fluctuations due to wake unsteadiness. These fluctuations have a greater temporal and spatial coherence than on the front face and the quasi-steady method over-predicts the extent of these fluctuations. Finally the results are used to check some assumptions made in the current UK wind loading code of practice.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

Dynamic Mixed Mode Crack Propagation Behavior of Structural Bonded Joints

  • Lee, Ouk-Sub;Park, Jae-Chul;Kim, Gyu-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.752-763
    • /
    • 2000
  • The stress field around the dynamically propagating interface crack tip under a remote mixed mode loading condition has been studied with the aid of dynamic photoelastic method. The variation of stress field around the dynamic interface crack tip is photographed by using the Cranz-Shardin type camera having $10^6$ fps rate. The dynamically propagating crack velocities and the shapes of isochromatic fringe loops are characterized for varying mixed load conditions in double cantilever beam (DCB) specimens. The dynamic interface crack tip complex stress intensity factors, $K_1\;and\;K_2$, determined by a hybrid-experimental method are found to increase as the load mixture ratio of y/x (vertical/horizontal) values. Furthermore, it is found that the dynamically propagating interface crack velocities are highly dependent upon the varying mixed mode loading conditions and that the velocities are significantly small compared to those under the mode I impact loading conditions obtained by Shukla (Singh & Shukla, 1996a, b) and Rosakis (Rosakis et al., 1998) in the USA.

  • PDF

Vibration performance characteristics of a long-span and light-weight concrete floor under human-induced loads

  • Cao, Liang;Liu, Jiepeng;Zhou, Xuhong;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.349-357
    • /
    • 2018
  • An extensive research was undertaken to study the vibration serviceability of a long-span and light-weight floor subjected to human loading experimentally and numerically. Specifically, heel-drop test was first conducted to capture the floor's natural frequencies and damping ratios, followed by jumping and running tests to obtain the acceleration responses. In addition, numerical simulations considering walking excitation were performed to further evaluate the vibration performance of a multi-panel floor under different loading cases and walking rates. The floor is found to have a high frequency (11.67 Hz) and a low damping ratio (2.32%). The comparison of the test results with the published data from the 1997 AISC Design Guide 11 indicates that the floor exhibits satisfactory vibration perceptibility overall. The study results show that the peak acceleration is affected by the walking path, walking rate, and adjacent structure. A simpler loading case may be considered in design in place of a more complex one.

Investigations on seismic response of two span cable-stayed bridges

  • Bhagwat, Madhav;Sasmal, Saptarshi;Novak, B.;Upadhyay, A.
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.337-356
    • /
    • 2011
  • In this paper, cable-stayed bridges with single pylon and two equal side spans, with variations in geometry and span ranging from 120 m to 240 m have been studied. 3D models of the bridges considered in this study have been analysed using ANSYS. As the first step towards a detailed seismic analysis, free vibration response of different geometries is studied for their mode shapes and frequencies. Typical pattern of free vibration responses in different frequencies with change in geometry is observed. Further, three different seismic loading histories are chosen with various characteristics to find the structural response of different geometries under seismic loading. Effect of variation in pylon shape, cable arrangement with variation in span is found to have typical characteristics with different structural response under seismic loading. From the study, it is observed that the structural response is very much dependent on the geometry of the cable-stayed bridge and the characteristics of the seismic loading as well. Further, structural responses obtained from the study would help the design engineers to take decisions on geometric shapes of the bridges to be constructed in seismic prone zones.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • 제5권6호
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.