• Title/Summary/Keyword: Completeness of Generated Characters

Search Result 2, Processing Time 0.017 seconds

Evaluation of Criteria for Mapping Characters Using an Automated Hangul Font Generation System based on Deep Learning (딥러닝 학습을 이용한 한글 글꼴 자동 제작 시스템에서 글자 쌍의 매핑 기준 평가)

  • Jeon, Ja-Yeon;Ji, Young-Seo;Park, Dong-Yeon;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.850-861
    • /
    • 2020
  • Hangul is a language that is composed of initial, medial, and final syllables. It has 11,172 characters. For this reason, the current method of designing all the characters by hand is very expensive and time-consuming. In order to solve the problem, this paper proposes an automatic Hangul font generation system and evaluates the standards for mapping Hangul characters to produce an effective automated Hangul font generation system. The system was implemented using character generation engine based on deep learning CycleGAN. In order to evaluate the criteria when mapping characters in pairs, each criterion was designed based on Hangul structure and character shape, and the quality of the generated characters was evaluated. As a result of the evaluation, the standards designed based on the Hangul structure did not affect the quality of the automated Hangul font generation system. On the other hand, when tried with similar characters, the standards made based on the shape of Hangul characters produced better quality characters than when tried with less similar characters. As a result, it is better to generate automated Hangul font by designing a learning method based on mapping characters in pairs that have similar character shapes.

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.