• 제목/요약/키워드: Complete chloroplast genome

검색결과 44건 처리시간 0.025초

The complete chloroplast genome sequence of Rhododendron caucasicum (Ericaceae)

  • Myounghai KWAK;Rainer W. BUSSMANN
    • 식물분류학회지
    • /
    • 제53권3호
    • /
    • pp.230-236
    • /
    • 2023
  • Rhododendron caucasicum Pall. is a shrub distributed in the mountainous areas of the Caucasus from northeastern Türkiye towards the Caspian Sea. This study reports the first complete chloroplast genome sequence of R. caucasicum. The plastome is 199,487 base pairs (bp) long and exhibits a typical quadripartite structure comprising a large single-copy region of 107,645 bp, a small single-copy region of 2,598 bp, and a pair of identical inverted repeat regions of 44,622 bp each. It contains 143 genes, comprising 93 protein-coding genes, 42 tRNA genes, and eight rRNA genes. The large chloroplast genome size is likely due to the expansion of inverted repeats. A phylogenetic analysis of chloroplast genomes with other Rhododendron species supports previously recognized infrageneric relationship.

The complete chloroplast genome of Polygonatum falcatum (Asparagaceae)

  • CHOI, Tae-Young;YUN, Se-Hyun;LEE, Soo-Rang
    • 식물분류학회지
    • /
    • 제52권1호
    • /
    • pp.80-83
    • /
    • 2022
  • Polygonatum falcatum is a perennial herb distributed in East Asia. We determined the characteristics of the complete chloroplast genome in P. falcatum for the first time, with a de novo assembly strategy. The chloroplast genome was 154,579bp in length harboring 87 protein coding genes, 38 tRNA genes and eight rRNA genes. It exhibits typical quadripartite structure comprising a large single-copy (LSC) (83,528bp), a small single-copy (SSC) (18,457bp) and a pair of inverted repeats (IRs) (26,297bp). Phylogenetic analysis of 16 chloroplast genomes from Asparagaceae reveals that the genus Polygonatum is a monophyletic group and that P. falcatum is clustered together with the congener, P. odoratum.

The complete chloroplast genome of Erigeron canadensis isolated in Korea (Asteraceae): Insight into the genetic diversity of the invasive species

  • Sang-Hun OH;Jongsun PARK
    • 식물분류학회지
    • /
    • 제53권1호
    • /
    • pp.47-53
    • /
    • 2023
  • We have determined the complete chloroplast genome of Erigeron Canadensis isolated in Korea. The circular chloroplast genome of E. canadensis is 152,767 bp long and has four subregions: 84,317 bp of large single-copy and 18,446 bp of small single-copy regions are separated by 25,004 bp of inverted repeat regions including 133 genes (88 protein-coding genes, eight rRNAs, and 37 tRNAs). The chloroplast genome isolated in Korea differs from the Chinese isolate by 103 single-nucleotide polymorphisms (SNPs) and 47 insertions and deletion (INDEL) regions, suggesting different invasion sources of E. canadensis in Korea and China. A nucleotide diversity analysis revealed that the trend of the nucleotide diversity of E. canadensis followed that of 11 Erigeron chloroplasts, except for three peaks. The phylogenetic tree showed that our E. canadensis chloroplast is clustered with E. canadensis reported from China. Erigeron canadensis can be a good target when attempting to understand genetic diversity of invasive species.

The complete chloroplast genome of Aruncus aethusifolius (Rosaceae), a species endemic to Korea

  • PARK, Jongsun;SUH, Hwa-Jung;OH, Sang-Hun
    • 식물분류학회지
    • /
    • 제52권2호
    • /
    • pp.118-122
    • /
    • 2022
  • Aruncus aethusifolius (H. Lév.) Nakai is an endemic species in Korea and is economically important as an ornamental herb. The complete chloroplast genome of A. aethusifolius is 157,217 bp long with four subregions consisting of 85,207 bp of large singlecopy and 19,222 bp of small single-copy regions separated by 26,394 bp of inverted repeat regions. The genome includes 131 genes (86 protein-coding genes, eight rRNAs, and 37 tRNAs). Phylogenetic analyses demonstrates that the chloroplast genome of A. aethusifolius was sister to A. dioicus var. kamtschaticus, forming the strongly supported clade of Aruncus. This is the first report of the chloroplast genome of A. aethusifolius.

The complete chloroplast genome of Glycyrrhiza uralensis Fisch. isolated in Korea (Fabaceae)

  • KIM, Mi-Hee;PARK, Suhyeon;LEE, Junho;BAEK, Jinwook;PARK, Jongsun;LEE, Gun Woong
    • 식물분류학회지
    • /
    • 제51권4호
    • /
    • pp.353-362
    • /
    • 2021
  • The chloroplast genome of Glycyrrhiza uralensis Fisch was sequenced to investigate intraspecific variations on the chloroplast genome. Its length is 127,689 bp long (34.3% GC ratio) with atypical structure of chloroplast genome, which is congruent to those of Glycyrrhiza genus. It includes 110 genes (76 protein-coding genes, four rRNAs, and 30 tRNAs). Intronic region of ndhA presented the highest nucleotide diversity based on the six G. uralenesis chloroplast genomes. A total of 150 single nucleotide polymorphisms and 10 insertion and deletion (INDEL) regions were identified from the six G. uralensis chloroplast genomes. Phylogenetic trees show that the six chloroplast genomes of G. uralensis formed the two clades, requiring additional studies to understand it.

The complete chloroplast genome sequence of Korean Neolitsea sericea (Lauraceae)

  • PARK, Yoo-Jung;CHEON, Kyeong-Sik
    • 식물분류학회지
    • /
    • 제51권3호
    • /
    • pp.332-336
    • /
    • 2021
  • The complete chloroplast (cp) genome sequence of Neolitsea sericea was determined by Illumina sequencing. The complete cp genome was 152,446bp in length, containing a large single-copy region of 93,796 bp and a small single-copy region of 18,506bp, which were separated by a pair of 20,072bp inverted repeats. A total of 112 unique genes were annotated, including 78 protein-coding genes (PCGs), 30 transfer RNAs, and four ribosomal RNAs. Among the PCGs, 18 genes contained one or two introns. A very low level of sequence variation between two cp genomes of N. sericea was found with seven insertions or deletions and only one single nucleotide polymorphism. An analysis using the maximum likelihood method showed that N. sericea was closely related to Actinodaphne trichocarpa.

Analysis of the chloroplast genome and SNP detection in a salt tolerant breeding line in Korean ginseng

  • Jo, Ick-Hyun;Bang, Kyong-Hwan;Hong, Chi Eun;Kim, Jang-Uk;Lee, Jung-Woo;Kim, Dong-Hwi;Hyun, Dong-Yun;Ryu, Hojin;Kim, Young-Chang
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.417-421
    • /
    • 2016
  • The complete chloroplast genome sequence of Panax ginseng breeding line 'G07006', showing higher salt tolerance, was confirmed by de novo assembly using whole genome next-generation sequences. The complete chloroplast (CP) genome size is 156,356 bp, including two inverted repeats (IRs) of 52,060 bp, separated by the large single-copy (LSC 86,174 bp) and the small single-copy (SSC 18,122 bp) regions. One hundred fourteen genes were annotated, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Among them, 18 sites were duplicated in the inverted repeat regions. By comparative analyses of the previously identified CP genome sequences of nine cultivars of P. ginseng and that of G07006, five useful SNPs were defined in this study. Since three of the five SNPs were cultivar-specific to Chunpoong and Sunhyang, they could be easily used for distinguishing from other ginseng accessions. However, on arranging SNPs according to their gene location, the G07006 genotype was 'GTGGA', which was distinct from other accessions. This complete chloroplast DNA sequence could be conducive to discrimination of the line G07006 (salt-tolerant) and further enhancement of the genetic improvement program for this important medicinal plant.

The complete chloroplast genome of Zoysia macrostachya (Poaceae): Insights into intraspecific variations and species delimitation of the Zoysia species

  • OH, Sung-Dug;LEE, Seong-Kon;YUN, Doh-Won;SUN, Hyeon-Jin;KANG, Hong-Gyu;LEE, Hyo-Yeon;XI, Hong;PARK, Jongsun;LEE, Bumkyu
    • 식물분류학회지
    • /
    • 제51권3호
    • /
    • pp.326-331
    • /
    • 2021
  • The complete chloroplast genome of Zoysia macrostachya Franch. & Sav. isolated in Korea is 135,902 bp long (GC ratio is 38.4%) and has four subregions; 81,546 bp of large single-copy (36.3%) and 12,586 bp of small single-copy (32.7%) regions are separated by 20,885 bp of inverted repeat (44.1%) regions, including 130 genes (83 protein-coding genes, eight rRNAs, and 39 tRNAs). Thirty-nine single nucleotide polymorphisms and 11 insertions and deletion (INDEL) regions were identified from two Z. macrostachya chloroplast genomes, the smallest among other Zoysia species. Phylogenetic trees show that two Z. macrostachya chloroplast genomes are clustered into a single clade. However, we found some incongruency with regard to the phylogenetic position of the Z. macrostachya clade. Our chloroplast genome provides insights into intraspecific variations and species delimitation issues pertaining to the Zoysia species.

Complete chloroplast genome sequence of Clematis calcicola (Ranunculaceae), a species endemic to Korea

  • Beom Kyun PARK;Young-Jong JANG;Dong Chan SON;Hee-Young GIL;Sang-Chul KIM
    • 식물분류학회지
    • /
    • 제52권4호
    • /
    • pp.262-268
    • /
    • 2022
  • The complete chloroplast genome (cp genome) sequence of Clematis calcicola J. S. Kim (Ranunculaceae) is 159,655 bp in length. It consists of large (79,451 bp) and small (18,126 bp) single-copy regions and a pair of identical inverted repeats (31,039 bp). The genome contains 92 protein-coding genes, 36 transfer RNA genes, eight ribosomal RNA genes, and two pseudogenes. A phylogenetic analysis based on the cp genome of 19 taxa showed high similarity between our cp genome and data published for C. calcicola, which is recognized as a species endemic to the Korean Peninsula. The complete cp genome sequence of C. calcicola reported here provides important information for future phylogenetic and evolutionary studies of Ranunculaceae.

Complete Chloroplast Genome Sequence of Dumortiera hirsuta

  • Kwon, Woochan;Kim, Yongsung;Park, Jongsun
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.43-43
    • /
    • 2018
  • Dumortiera hirsuta (Sw.) Nees (Dumortieraceae) is a thallose liverwort distributed in tropics and subtropics. It is the only species in family Dumortieraceae, which is the second basal family in order Marchantiales. D. hirsuta is characterized by hairy receptacles and lacking air chamber. The complete chloroplast genome of D. hirsuta was successfully rescued from raw reads generated by HiSeq4000. Its total length is 122,050 bp consisting of four regions: large single copy (LSC) region (81,697 bp), small single copy (SSC) region (20,061 bp), and two inverted repeats (IRs; 10,146 bp per each). It contained 129 genes (84 coding DNA sequence (CDS), eight rRNAs, and 37 tRNAs); 18 genes including four rRNAs, and five tRNAs are duplicated in the IR regions. The overall GC content of D. hirsuta is 28.7%, which is almost same to that of Marchantia paleacea. Phylogenetic tree based on all genes from whole chloroplast genomes will provides phylogenetic position of D. hirstua. This sequence will be an fundamental resources for further researches of order Marchantiales.

  • PDF