• Title/Summary/Keyword: Competitive electricity market

Search Result 197, Processing Time 0.025 seconds

Locational Marginal Price Forecasting Using Artificial Neural Network (역전파 신경회로망 기반의 단기시장가격 예측)

  • Song Byoung Sun;Lee Jeong Kyu;Park Jong Bae;Shin Joong Rin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.698-700
    • /
    • 2004
  • Electric power restructuring offers a major change to the vertically integrated utility monopoly. Deregulation has had a great impact on the electric power industry in various countries. Bidding competition is one of the main transaction approaches after deregulation. The energy trading levels between market participants is largely dependent on the short-term price forecasts. This paper presents the short-term System Marginal Price (SMP) forecasting implementation using backpropagation Neural Network in competitive electricity market. Demand and SMP that supplied from Korea Power Exchange (KPX) are used by a input data and then predict SMP. It needs to analysis the input data for accurate prediction.

  • PDF

Appropriate Policy for DSM Program in Competitive Electric Market (전력산업 주조개편에 따른 수요관리 추진방향)

  • Jin, B.M.;Rhee, C.H.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.334-338
    • /
    • 2001
  • The importance of DSM Program is increasing since it can solve the problems of electric power resource space shortage, air & water pollution and create new industry and induce economic development through energy import reduction. This study describes the government's policy and direction on DSM at the national level after introducing competition in electricity market. Moreover, it tries to make contribution to government's decision-making by analyzing existing DSM programs' implementation and providing new evaluation system for DSM programs.

  • PDF

The Optimal Operation of Distributed Generation Possessed by Community Energy System Considering Low-Carbon Paradigm (저탄소 패러다임에 따른 구역전기사업자의 분산전원 최적 운영에 관한 연구)

  • Kim, Sung-Yul;Shim, Hun;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1504-1511
    • /
    • 2009
  • By development of renewable energies and high-efficient facilities and deregulated electricity market, the operation cost of distributed generation(DG) becomes more competitive. The amount of distributed resource is considerably increasing in the distribution network consequently. Also, international environmental regulations of the leaking carbon become effective to keep pace with the global efforts for low-carbon paradigm. It contributes to spread out the business of DG. Therefore, the operator of DG is able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, community energy system(CES) having DGs is recently a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to the transmission service charges and etc. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize the profit. If there is no regulation for carbon emission(CE), the generators which get higher production than generation cost will hold a prominent position in a competitive price. However, considering the international environment regulation, CE newly will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper will introduce the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES and Particle Swarm Optimization (PSO) will be used to solve this problem. The optimal operation of DG represented in this paper is to be resource to CES and system operator for determining the decision making criteria.

The Optimal Operation for Community Energy System Using a Low-Carbon Paradigm with Phase-Type Particle Swarm Optimization

  • Kim, Sung-Yul;Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.530-537
    • /
    • 2010
  • By development of renewable energy and more efficient facilities in an increasingly deregulated electricity market, the operation cost of distributed generation (DG) is becoming more competitive. International environmental regulations of the leaking carbon become effective to reinforce global efforts for a low-carbon paradigm. Through increased DG, operators of DG are able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, a community energy system (CES) with DGs is a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to transmission service charges and other costs. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize profit. Considering the international environment regulations, CE will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper introduces the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES. A Particle Swarm Optimization (PSO) will be used to solve this complicated problem. The optimal operation of DG represented in this paper would guide CES and system operators in determining the decision making criteria.

A study of congestion management in bilateral electricity market using BTDF (BTDF를 이용한 직거래 전력시장에서의 혼잡처리에 관한 연구)

  • Lee, Seung-Jin;Lee, Ki-Song;Park, Jong-Bae;Shin, Joong-Rin;Lee, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.609-611
    • /
    • 2003
  • This paper presents a method for a congestion management in the competitive market which is modeled as the multiple bilateral transaction. Traditionary, the congestion management for the multiple bilateral transaction is accomplished through the process of adjustment bids. It is necessary in for the market entity to submit their price information when the congestion is occured. Finally, the ISOs can be blown about the approximated contract price of participants from the price of adjustment bids. However, the entities can submit only the amount of their contract to ISOs and ISOs are required the method to manage the congestion only by the contracted quantity. Therefore, this paper presents a method for congestion management by curtailing the only contracted quantity of market entities. To evaluated the above problem, we suggest Bilateral Transaction Distribution Factors(BTDFs), which is the sensitivity of line flow with curtailment of transactions. Using this factor, we studied about congestion management when the objective function is to minimize total curtailment of transaction.

  • PDF

Marginal Loss Factor using Optimal Power flow in Power Market (최적조류계산을 이용한 한계손실계수의 전력시장 적용)

  • Sin, Dong-Jun;Go, Yong-Jun;Lee, Hyo-Sang;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.379-384
    • /
    • 2002
  • In the competitive electricity market, various pricing methods are developed and practiced in many countries. Among these pricing methods, marginal loss factor(MLF) can be applied to reflect the marginal cost of network losses. For the calculation of MLF, power flow method has been used to calculate system loss deviation. However, this power flow method shows some shortcomings such as necessity of regional reference node, and absence of an ability to consider network constraints like line congestion, voltage limit, and generation output limit. The former defect might affects adversely to the equity of market participants and the latter might generate an inappropriate price signals to customers and generators. To overcome these defects, the utilization of optimal power flow(OPF) is suggested to get the system loss deviation in this paper. 30-bus system is used for the case study to compare the MLF results by the power flow and the OPF method for 24-hour dispatching and pricing, Generator payment and customer charge are compared with these two methods also. The results show that MLF by OPF reflects the power system condition more faithfully than that of by the conventional power flow method

The Effects of Coal Thermal Power Plant Exports on the National Economy (석탄화력발전 해외수출의 경제적 파급효과 분석)

  • Jin, Se-Jun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.17-27
    • /
    • 2013
  • Korean domestic electricity market is saturated through trying to find ways to overcome the limitations of the domestic electricity industry with overseas electricity markets. Korean electricity industry in the overseas market in order to pursue continuous growth, competitive and aggressive investment in overseas market is promoting. This paper attempts to apply input-output analysis to estimate the role of coal thermal power plant sector exports national economy. More specifically, this study shows what national economy effect of production-inducing effect, value-added inducing effect, and employment-inducing effect are explored with demand-driven model. After define coal thermal power plant sector what small sized of Input-Output table 168 sectors among 17 sectors, this study pays particular and close attention to coal thermal power plant sector by taking the sector as exogenous specification and then investigating economic impacts of it. This study uses coal thermal power plant exportation case of Vietnam project, production-inducing effect, value-added inducing effect, and employment-inducing effect are 2,853 billion won, 973 billion won and 14,761 persons, respectively.

Consumers' Willingness to Pay for Renewable Energy (신재생에너지 전력에 대한 소비자 지불의사)

  • Lee, Changhoon;Hwang, Seok-Joon
    • Environmental and Resource Economics Review
    • /
    • v.18 no.2
    • /
    • pp.173-190
    • /
    • 2009
  • Although renewable energy sources are more environmentally friendly than fossil energy sources, they are far more costly and hard to survive in the electricity market. For a competitive renewable electricity, the government should take 'visible' actions to compensate higher production costs. Popular policies, such as Feed-In-Tariff and Renewable Portfolio Standards, are financed by an undifferentiated increase of electricity bills (a collective financing mechanism) but are occasionally confronted with the opposition of the electricity consumers. This paper discusses the consumers' willingness to pay for renewable energy in order to back up the voluntary financing mechanism, the Green Pricing. The Tobit analysis of a consumer survey shows that the consumer's WTP is positively influenced by his environmentally friendly activities under both financing mechanisms. The knowledge on renewable energy is statistically significant only under collective financing mechanism.

  • PDF

Sensitivity Analysis of Probabilistic Reliability Evaluation of KEPCO System Using TRELSS (TRELSS를 이용한 한전계통의 확률론적 신뢰도 평가의 감도해석)

  • Tran, T.T.;Kwon, J.J.;Choi, J.S.;Jeon, D.H.;Park, Y.S.;Han, G.N.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.234-236
    • /
    • 2005
  • The importance and necessity conducting studios on grid reliability evaluation have been increasingly important In recent years due to the number of black-out events occurring through in the world. Quantity evaluation of transmission system reliability is very important in a competitive electricity environment. The reason is that the successful operation of electric power under a deregulated electricity market depends on transmission system reliability management. Also in Korea it takes places. The results of many case studios fer the KEPCO system using the Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Version 6_2, a program developed by EPRI are introduced in this paper. Some sensitivity analysis has been Included in case study. This paper suggests that the some Important input parameters of the TRELSS can be determined optimally from this sensitivity analysis fer high reliability level operation of a system.

  • PDF

Probabilistic Reliability Analysis of KEPCO System Using TRELSS

  • Tran Trung Tinh;Kwon Jung-Ji;Choi Jae-Seok;Choo Jin-Boo;Jeon Dong-Hun;Han Kyoeng-Nam;Billinton Roy
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • The importance of conducting necessary studies on grid reliability evaluation has become increasingly important in recent years due to the number of blackout events occurring throughout the world. Additionally, quantitative evaluation of transmission system reliability is very important in a competitive electricity environment. The reason behind this is that successful operation of an electric power company under a deregulated electricity market depends on transmission system reliability management. The results of many case studies for the Korea Electric Power Cooperation (KEPCO) system using the Transmission Reliability Evaluation for Large-Scale Systems (TRELSS) Version 6.2 are illustrated in this paper. The TRELSS was developed by EPRI and Southern Company Services Inc. This paper presents the reliability analysis of KEPCO system expansion planning by using the TRELSS program.