• Title/Summary/Keyword: Competitive Adsorption

Search Result 111, Processing Time 0.02 seconds

Sensitivity Analysis of Amino Acids in Simulated Moving Bed Chromatography

  • Lee, Ju-Weon;Lee, Chong-Ho;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.110-115
    • /
    • 2006
  • We conducted a sensitivity analysis of the simulated moving bed (SMB) chromatography with the case model of the separation of two amino acids phenylalanine and tryptophan. We consider a four-zone SMB chromatography where the triangle theory is used to determine the operating conditions. Competitive Langmuir isotherm model was used to determine the adsorption isotherm. The finite difference method is used to solve nonlinear partial differential equation (PDE) systems numerically. We examined the effects of alterations in the operating conditions(feed-extract, feed-raffinate, eluent-extract, eluent-raffinate, recycle, and switching time) and the adsorption isotherm parameters (Langmuir isotherm parameters a and b) on SMB efficiency. The variation range of operating conditions and Langmuir isotherm a was between -50 and 50% of original value and the variation range of the Langmuir isotherm b was between $2.25^{-5}$ and $2.25^5$ times of original value.

Synthesis of Iron Oxide and Adsorption of Arsenic on Iron Oxide (철산화물의 합성 및 이를 이용한 비소의 흡착제거)

  • Kim, Youn Jung;Choi, Sik Young;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.99-106
    • /
    • 2019
  • Arsenic is among the heavy metals commonly found in aqueous environments. Iron oxide is known as an efficient adsorbent for the arsenic. A new synthetic method was applied to provide iron oxide giving a large specific surface area. The mixing method affects the formation of iron oxide. Ultrasonic waves assisted the formation of very fine iron oxide in an organic phase. The synthesized iron oxide is amorphous type with a high surface area of more than $181.3m^2/g$. Sorption capacity of the synthesized adsorbent was relatively very high for arsenic and varied depending on the oxidation state of arsenic: a higher capacity was obtained with As(V). Lower solution pH provided a higher sorption capacity for As(V). The competitive effect of co-exist anions such as chloride, nitrate, and sulfate was minimal in sorption capacity of the iron oxide for arsenic.

Predictive Modeling of Competitive Biosorption Equilibrium Data

  • Chu K.H.;Kim E.Y.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.67-71
    • /
    • 2006
  • This paper compares regression and neural network modeling approaches to predict competitive biosorption equilibrium data. The regression approach is based on the fitting of modified Langmuir-type isotherm models to experimental data. Neural networks, on the other hand, are non-parametric statistical estimators capable of identifying patterns in data and correlations between input and output. Our results show that the neural network approach outperforms traditional regression-based modeling in correlating and predicting the simultaneous uptake of copper and cadmium by a microbial biosorbent. The neural network is capable of accurately predicting unseen data when provided with limited amounts of data for training. Because neural networks are purely data-driven models, they are more suitable for obtaining accurate predictions than for probing the physical nature of the biosorption process.

A STUDY ON ADSORPTION AND DESORPTION BEHAVIORS OF 14C FROM A MIXED BED RESIN

  • Park, Seung-Chul;Cho, Hang-Rae;Lee, Ji-Hoon;Yang, Ho-Yeon;Yang, O-Bong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.847-856
    • /
    • 2014
  • Spent resin waste containing a high concentration of $^{14}C$ radionuclide cannot be disposed of directly. A fundamental study on selective $^{14}C$ stripping, especially from the IRN-150 mixed bed resin, was carried out. In single ion-exchange equilibrium isotherm experiments, the ion adsorption capacity of the fresh resin for non-radioactive $HCO_3{^-}$ ion, as the chemical form of $^{14}C$, was evaluated as 11mg-C/g-resin. Adsorption affinity of anions to the resin was derived in order of $NO_3{^-}$ > $HCO_3{^-}{\geq}H_2PO_4{^-}$. Thus the competitive adsorption affinity of $NO_3{^-}$ ion in binary systems appeared far higher than that of $HCO_3{^-}$ or $H_2PO_4{^-}$, and the selective desorption of $HCO_3{^-}$ from the resin was very effective. On one hand, the affinity of $Co^{2+}$ and $Cs^+$ for the resin remained relatively higher than that of other cations in the same stripping solution. Desorption of $Cs^+$ was minimized when the summation of the metal ions in the spent resin and the other cations in solution was near saturation and the pH value was maintained above 4.5. Among the various solutions tested, from the view-point of the simple second waste process, $NH_4H_2PO_4$ solution was preferable for the stripping of $^{14}C$ from the spent resin.

Nonlinear Adsorption Isotherm of Single and Multi-Components of 2'-Deoxyribonucleosides (2'-deoxyribonucleosides의 단일 및 다성분계의 비선형 흡착평형식)

  • Jin, Long Mei;Han, Soon Koo;Choi, Dae-Ki;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.230-235
    • /
    • 2005
  • Reversed-phase high-performance liquid chromatography (RP-HPLC) was used to determine the equilibrium isotherm of single and multi-components of dUrd(2'-deoxyuridine), dGuo(2'-deoxyguanosine), and dAdo(2'-deoxyadenosine) of 2'-deoxyribonucleosides by dynamic method. The composition of mobile phase was 90/10 vol.% (water/MeOH). With an increase in the injection volumes, the retention times were shorter and the peak shapes were triangle-shaped, so Langmuir-type isotherm was assumed. The Langmuir adsorption parameters were estimated by PIM (pulsed-input method), and the competitive Langmuir adsorption isotherm was further utilized. For the sample of the dUrd and dGuo whose retention times were relatively short, the agreement of between the calculated value and experimental data was fairly good in both single and multi-components, but for the dAdo, the last eluting component, some deviations were caused by non-linear and non-ideal properties.

Competitive Adsorption of Two Basic Dyes RB5 and GB4 on a Local Clay (점토에 대한 2개 염기성 염료 RB5와 GB4의 경쟁 흡착)

  • Elaziouti, A.;Derriche, Z.;Bouberka, Z.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • The equilibrium of adsorption of basics dyes RB 5 and BG 4 from a single dyes in the mixtures on the sodium-exchanged clay of the Maghnia (Algeria) was studied. The maximum adsorption capacities of BR5 and BG4 in single dyes were 465.13 and 469.90 mg/g respectively. In the simultaneous adsorption of BR5 and BG4 from mixture solutions, three different initials concentrations ratios R (R=$C_{(BR5)}/C_{(BG4)}$) were tested: 2.5/1, 1/1 and 1/2.5 using ADMI method. The isotherms adsorptions of dyes from the mixtures are characteristics of competition phenomenon. A very strong interaction between BR5 and BG4 for the active sites of adsorption of surface of clay is obtained for R = 1/1. The ratio R' (R'=$Qe_{(mixture)}/Qe_{(single)}$) of the adsorption capacity of BR5 and BG4 in the mixture were reduced by factor of 0.86, 0.74 and 0.84 for the initials concentrations ratios R (R=$C_{(BR5)}/C_{(BG4)}$) of 2.5/1, 1/1 and 1/2.5 respectively. The variation of the ratio of the adsorption capacity R‘ of BR5 and BG4 in the mixture solutions with initial concentration ratios R indicates that BR5 dye is slightly favourable in the competition adsorption than BG4. Langmuir and Freundlich models fit very well with adsorption behaviour of single dyes as well as the dyes in mixture solutions.

Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism (비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작)

  • Ko, Il-Won;Kim, Ju-Yong;Kim, Gyeong-Ung;An, Ju-Seong;Davis, A. P.
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • This study was performed to investigate the effect of humic acid on the adsorption of arsenic onto hematite and its binding mechanism through the chemical speciation modeling in the binary system and the adsorption modeling in the ternary system. The complexation modeling of arsenic and humic acid was suitable for the binding model with the basis of the electrostatic repulsion and the effect of bridging metal. In comparison with the experimental adsorption data in the ternary system, the competitive adsorption model from the binary intrinsic equilibrium constants was consistent with the amount of arsenic adsorption. However, the additive rule showed the deviation of model in the opposite way of cationic heavy metals, because the reduced organic complexation of arsenic and the enhanced oxyanionic competition diminished the adsorption of arsenic. In terms of the reaction mechanism, the organic complex of arsenic, neutral As(III) and oxyanionic As(V) species were transported and adsorbed competitively to the hematite surface forming the inner-sphere complex in the presence of humic acid.

Adsorption Characteristics of Co(II), Ni(II), Cr(III) and Fe(III) Ions onto Cation Exchange Resin - Application to the Demineralizing Process in a Primary Coolant System of PWR (양이온교환수지에 대한 Co(II), Ni(II), Cr(III), Fe(III) 이온의 흡착 특성 - 원자로 일차 냉각재 계통내 탈염 공정에의 적용)

  • Kang, So-Young;Lee, Byung-Tae;Lee, Jong-Un;Moon, Seung-Hyeon;Kim, Kyoung-Woong
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • Characteristics of Amberlite IRN 77, a cation exchange resin, and the mechanisms of its adsorption equilibria with Co(II), Ni(II), Cr(III) and Fe(III) ions were investigated for the application of the demineralizing process in the primary coolant system of a pressurized water reactor (PWR). The optimum dosage of the resin for removal of the dissolved metal ions at $200mgL^{-1}$ was 0.6 g for 100 mL solution. Most of each metal ion was adsorbed onto the resin in an hour from the start of the reaction. Each metal adsorption onto the resin could be well represented by Langmuir isotherms. However, in the case of Fe(III) adsorption, continuous formation of Fe-oxide or -hydroxide and its subsequent precipitation inhibited the completion of the equilibrium between the metal and the adsorbent Cobalt(II) and Ni(II), which have an equivalent electrovalence, were adsorbed to the resin with a similar adsorption amount when they coexisted in the solution. However, Cr(III) added to the solution competitively replaced Co(II) and Ni(II) which were already adsorbed onto the resin, resulting in desorption of these metals into the solution. The result was likely due to a higher adsorption affinity of Cr(III) than Co(II) and Ni(II). This implies that the interactively competitive adsorption of multi-cations onto the resin should be fully considered for an efficient operation of the demineralizing ion exchange process in the primary coolant system.

Removal of Odorants by Selective Adsorption from Natural Gas for Protection of Steam Reforming Catalyst in Fuel Cell from Sulfur Poisoning (연료전지용 개질기 촉매의 피독방지를 위한 천연가스 중의 황성분 부취제의 선택적 흡착제거)

  • Oh, Sang-Seung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.337-343
    • /
    • 2007
  • The reforming catalyst and the electrodes in fuel cells can be poisoned by the organic sulfur compound which is added as an odorant for checking out the leakage of natural gas, and that makes a big problem of system degradation. In this study, various adsorbents, such as silica, ${\gamma}$-alumina, activated carbon, HZSM-5, Ultra-stable Y zeolite (USY), and beta zeolite (BEA), were utilized to remove tetra-hydrothiophene (THT) and tert-butylmercaptan (TBM), and to confirm the performance in the adsorption of those odorants by using a continuous adsorptive bed. The effects of Si/Al ratio of zeolites, adsorption temperature and the type of balance gas (methane or He) on the adsorption performance in the packed bed have been investigated. In addition, the competitive adsorption between TBM and THT on the adsorbents was also estimated. The result shows that H-type BEA zeolite exhibited the highest adsorption capacity for TBM and THT odorant, and the higher amount of THT was removed adsorptively on the same adsorbent than TBM. The physical and chemical adsorption of those compounds on acid sites of zeolite were confirmed by temperature programmed desorption (TPD) and infrared spectrum (IR) analyses.

Physicochemical Properties of Forest Soils Related to Sulfate Adsorption (황산이온의 흡착에 관여하는 산림토양의 물리화학적 특성)

  • Lee, Seung-Woo;Park, Gwan-Soo;Lee, Choong-Hwa;Kim, Eun-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.371-377
    • /
    • 2004
  • Sulfate adsorption in forest soils is a process of sulfur dynamics playing an important role in plant uptake, cation movement, acid neutralization capacity and so on. The relationship between sulfate adsorption and some physicochemical properties of four forest soils was investigated. Extractable sulfate contents and sulfate adsorption capacity (SAC) in the forest soils varied much among study sites. Extractable sulfate contents were more in sub-surface soils with lower organic matter and greater Al and Fe oxides than in surface soils. The average contents of $Al_d$ and $Fe_d$ in the sub-surface soils were 8.49 and $12.45g\;kg^{-1}$, respectively. Soil pH, cation exchange capacity and clay content were positively correlated with the extractable sulfate contents and SAC. Organic carbon content, however, was negatively correlated with the extractable sulfate contents, implying the competitive adsorption of sulfate with soil organic matter. Considerably significant correlation was found between inorganic + amorphous Al and Fe oxides and the sulfate adsorption, but crystalline Al and other fractions of Fe oxide showed no correlation. Relatively close relationship between the adsorbed sulfates and soil pH, cation exchange capacity, or amorphous Al oxides indicates that the accelerated soil acidification may substantially reduce the potential for sulfate adsorption contributing to sulfur flux in forest ecosystems.