• Title/Summary/Keyword: Compensation by prediction error

Search Result 40, Processing Time 0.023 seconds

A new learning algorithm for incomplete data sets and multi-layer neural networks

  • Bitou, Keiichi;Yuan, Yan;Aoyama, Tomoo;Nagashima, Umpei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.150-155
    • /
    • 2003
  • We discussed a quantitative structure-activity relationships (QSAR) technique on incomplete data set. We proposed a new solver that used 2 kinds of multi-layer neural networks. One is to compensate the defect data, and another is to evaluate the QSAR. The solver can predict the defects in model QSAR data. By using them, we get very high precision QSAR. It is 5-10 times higher than that of a traditional method. However, in case of anti-cancer Carboquone, the prediction is not so complete. It was about O(3) wrong than the model calculation. The predicted values would have rather large error. It is caused by noisy observations of Carboquone. However, if we used the uncertain predictions, new data are included in QSAR. If not, they were omitted. The effect would not be little. Therefore, we evaluated the QSAR. The results are contrary to the expectation, are not so wrong. We believe that the wrong effect is suppressed by including information of new data.

  • PDF

On the Errors of the Phased Beam Tracing Method for the Room Acoustic Analysis (실내음향 해석을 위한 위상 빔 추적법의 사용시 오차에 관하여)

  • Jeong, Cheol-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • To overcome the mid frequency limitation of geometrical acoustic techniques, the phased geometrical method was suggested by introducing the phase information into the sound propagation from the source. By virtue of phase information, the phased tracing method has a definite benefit in taking the interference phenomenon at mid frequencies into account. Still, this analysis technique has suffered from difficulties in dealing with low frequency phenomena, so called, wave nature of sound. At low frequencies, diffraction at corners, edges, and obstacles can cause errors in simulating the transfer function and the impulse response. Due to the use of real valued absorption coefficient, simulated results have shown a discrepancy with measured data. Thus, incorrect phase of the reflection characteristic of a wall should be corrected. In this work, the uniform theory of diffraction was integrated into the phased beam tracing method (PBTM) and the result was compared to the ordinary PBTM. By changing the phase of the reflection coefficient, effects of phase information were investigated. Incorporating such error compensation methods, the acoustic prediction by PBTM can be further extended to low frequency range with improved accuracy in the room acoustic field.

Effects of interface delay in real-time dynamic substructuring tests on a cable for cable-stayed bridge

  • Marsico, Maria Rosaria
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1173-1196
    • /
    • 2014
  • Real-time dynamic substructuring tests have been conducted on a cable-deck system. The cable is representative of a full scale cable for a cable-stayed bridge and it interacts with a deck, numerically modelled as a single-degree-of-freedom system. The purpose of exciting the inclined cable at the bottom is to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter physically corresponds to the point at which the cable starts to have an out-of-plane response when both input and previous response were in-plane. The numerical and the physical parts of the system interact through a transfer system, which is an actuator, and the input signal generated by the numerical model is assumed to interact instantaneously with the system. However, only an ideal system manifests a perfect correspondence between the desired signal and the applied signal. In fact, the transfer system introduces into the desired input signal a delay, which considerably affects the feedback force that, in turn, is processed to generate a new input. The effectiveness of the control algorithm is measured by using the synchronization technique, while the online adaptive forward prediction algorithm is used to compensate for the delay error, which is present in the performed tests. The response of the cable interacting with the deck has been experimentally observed, both in the presence of delay and when delay is compensated for, and it has been compared with the analytical model. The effects of the interface delay in real-time dynamic substructuring tests conducted on the cable-deck system are extensively discussed.

Adaptive Scanning Scheme for Mobile Broadband Wireless Networks based on the IEEE 802.16e Standard (802.16e 표준 기반 광대역 무선 이동 망을 위한 동적 스캐닝 기법)

  • Park, Jae-Sung;Lim, Yu-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.151-159
    • /
    • 2008
  • Mobile broadband wireless network is emerging as one of the hottest research areas due to technical advances, and the demands of users who wish to enjoy the same network experience on the move. In this paper, we investigate the handover process at the medium access control (MAC) layer in an IEEE 802.16e-based system. In particular, we identify problems concerned with the scan initiation Process called cell reselection and propose a received signal strength (RSS) estimation scheme to dynamically trigger a scanning process. We show how the RSS estimation scheme can timely initiate a scanning process by anticipating RSS values considering scan duration required.

  • PDF

On the Development of Spot and ARC Welding Dual-Purpose Robot System (스포트 및 아크 용접 겸용 로보트 시스템의 개발)

  • Ryuh, B.S.;Lee, Y.J.;Lee, Y.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.13-19
    • /
    • 1995
  • A dual purpose robot automation system is developed for both arc welding and spot welding by one robot within a cell. The need for automation of both arc welding and spot welding processes is urgent while the production volume is not so big as to accommodate separate stations for the two processes. Also, space is too narrow for separate stations to be settled down in the factory. A spot welding robot is chosen and the functions for arc welding are implemented in-house at cost of advanced functions. For the spot welding, a single pole type gun is used and the robot has to push down the plate to be wolded, which causes the robot positioning error. Therefore, position error compensation algorithm is developed. The basic functions for the arc welding processes are implemented using the digital I/O board of robot controller, PLC, and A/D conversion PCB. The weaving pattern is taught in meticulously by manual teach. A fixture unit is also developed for dual purpose. The main aspects of the system is presented in this paper especially in the design and implementation procedure. The signal diagrams and sequence logic diagrams are also included. The outcome of the dual purpose welding cell is the increased productivity and good production stability which is indispensable for production volume prediction. Also, it leads to reduction of manufacturing lead time.

  • PDF

Lightweight video coding using spatial correlation and symbol-level error-correction channel code (공간적 유사성과 심볼단위 오류정정 채널 코드를 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.188-199
    • /
    • 2008
  • In conventional video coding, encoder complexity is much higher than that of decoder. However, investigations for lightweight encoder to eliminate motion prediction/compensation claiming most complexity in encoder have recently become an important issue. The Wyner-Ziv coding is one of the representative schemes for the problem and, in this scheme, since encoder generates only parity bits of a current frame without performing any type of processes extracting correlation information between frames, it has an extremely simple structure compared to conventional coding techniques. However, in Wyner-Ziv coding, channel decoding errors occur when noisy side information is used in channel decoding process. These channel decoding errors appear more frequently, especially, when there is not enough correlation between frames to generate accurate side information and, as a result, those errors look like Salt & Pepper type noise in the reconstructed frame. Since this noise severely deteriorates subjective video quality even though such noise rarely occurs, previously we proposed a computationally extremely light encoding method based on selective median filter that corrects such noise using spatial correlation of a frame. However, in the previous method, there is a problem that loss of texture from filtering may exceed gain from error correction by the filter for video sequences having complex torture. Therefore, in this paper, we propose an improved lightweight encoding method that minimizes loss of texture detail from filtering by allowing information of texture and that of noise in side information to be utilized by the selective median filter. Our experiments have verified average PSNR gain of up to 0.84dB compared to the previous method.

A New Method for Thumbnail Extraction in H.264/AVC Bitstreams (H.264/AVC 비트스트림에서 썸네일 추출을 위한 새로운 방법)

  • Hong, Seung-Hwan;Kim, Ji-Eon;Chin, Young-Min;Kwon, Jae-Cheol;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.853-867
    • /
    • 2010
  • Recently, thumbnail techniques are required to index a high-performance video at digital convergence-based multimedia service like IPTV and DMB. Therefore a thumbnail extraction method in H.264/AVC bitstreams has been proposed. However, thumbnail quality deterioration problem at converting the general equation of spatial domain to frequency domain which is generated by not considering about H.264/AVC transform and quantization processing and rounding-off operation in intra prediction. In this paper, we propose a new thumbnail extraction method in H.264/AVC bitstreams. The proposed scheme is based on H.264/AVC core-transform for a thumbnail extraction in frequency domain, and probability theory, intra rounding-off error compensation. Through the implementation and performance evaluation, the subjective quality difference between the output of our scheme and the output of reference decoder is negligible and better than the conventional method, and moreover PSNR gain by up to 8.66 dB.

Low Complexity Video Encoding Using Turbo Decoding Error Concealments for Sensor Network Application (센서네트워크상의 응용을 위한 터보 복호화 오류정정 기법을 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hyuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • In conventional video coding, the complexity of encoder is much higher than that of decoder. However, as more needs arises for extremely simple encoder in environments having constrained energy such as sensor network, much investigation has been carried out for eliminating motion prediction/compensation claiming most complexity and energy in encoder. The Wyner-Ziv coding, one of the representative schemes for the problem, reconstructs video at decoder by correcting noise on side information using channel coding technique such as turbo code. Since the encoder generates only parity bits without performing any type of processes extracting correlation information between frames, it has an extremely simple structure. However, turbo decoding errors occur in noisy side information. When there are high-motion or occlusion between frames, more turbo decoding errors appear in reconstructed frame and look like Salt & Pepper noise. This severely deteriorates subjective video quality even though such noise rarely occurs. In this paper, we propose a computationally extremely light encoder based on symbol-level Wyner-Ziv coding technique and a new corresponding decoder which, based on a decision whether a pixel has error or not, applies median filter selectively in order to minimize loss of texture detail from filtering. The proposed method claims extremely low encoder complexity and shows improvements both in subjective quality and PSNR. Our experiments have verified average PSNR gain of up to 0.8dB.

Prediction of movie audience numbers using hybrid model combining GLS and Bass models (GLS와 Bass 모형을 결합한 하이브리드 모형을 이용한 영화 관객 수 예측)

  • Kim, Bokyung;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.447-461
    • /
    • 2018
  • Domestic film industry sales are increasing every year. Theaters are the primary sales channels for movies and the number of audiences using the theater affects additional selling rights. Therefore, the number of audiences using the theater is an important factor directly linked to movie industry sales. In this paper we consider a hybrid model that combines a multiple linear regression model and the Bass model to predict the audience numbers for a specific day. By combining the two models, the predictive value of the regression analysis was corrected to that of the Bass model. In the analysis, three films with different release dates were used. All subset regression method is used to generate all possible combinations and 5-fold cross validation to estimate the model 5 times. In this case, the predicted value is obtained from the model with the smallest root mean square error and then combined with the predicted value of the Bass model to obtain the final predicted value. With the existence of past data, it was confirmed that the weight of the Bass model increases and the compensation is added to the predicted value.

A Study on the Interframe Image Coding Using Motion Compensated and Classified Vector Quantizer (Ⅰ: Theory and Computer Simulation) (이동 보상과 분류 벡터 양자화기를 이용한 영상 부호화에 관한 연구 (Ⅰ: 이론및 모의실험))

  • Kim, Joong-Nam;Choi, Sung-Nam;Park, Kyu-Tae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.13-20
    • /
    • 1990
  • This paper describes an interframe image coding using motion compensated and classified vector quantizer (MC-CVQ). It is essential to carefully encode blocks with significant pels in motion compensated vector quantizers (MCVQ). In this respect, we propose a new CVQ algorithm which is appropriate to the coding of interframe prediction error after motion compensation. In order to encode an image efficiently at a low bit rate, we partition each block, which is the processing element in MC, into equally sized 4 vectors, and classify vectors into 15 classes according to the position of significant pels. Vectors in each class are then encoded by the vector quantizer with the codebook independently designed for the class. The computer simulation shows that the signal-to-noise ratio and the average bit rate of MC-CVQ are 35-37dB and 0.2-0.25bit/pel, respectively, for the videophone or video conference type image.

  • PDF