• Title/Summary/Keyword: Compensation Film

Search Result 131, Processing Time 0.026 seconds

Study on In-Plane Switching mode with discotic compensation film (Discotic 필름 보상형 In-Plane Switching 모드에 관한 연구)

  • Song, I.S.;Baik, I.S.;Jung, B.S.;Jeon, Y.M.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.518-521
    • /
    • 2004
  • We have investigated about compensation film to reduce the light leakage at an oblique angle in-plane switching mode. It is well known that uncompensated in-plane switching (US) and fringe field switching (FFS) liquid crystal displays (LCDs) have much better viewing angle than other modes owing to the in-plane rotation of the LC director. However, to accomplish optimal viewing angle characteristics in these devices, they must be compensated by one or more films. So, in this paper, we have studied how to reduce the light leakage with viewing angle using discotic film in dark state.

  • PDF

Optical Compensation in a Vertical Alignment Liquid Crystal Cell for Elimination of the Off-Axis Light Leakage

  • Ji, Seung-Hoon;Choi, Jung-Min;Lee, Gi-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1580-1583
    • /
    • 2008
  • We propose an optical configuration for a vertical alignment (VA) liquid crystal (LC) cell to eliminate the off-axis light leakage in the dark state. The proposed compensation configuration consists of a positive A-film, a positive C-film and a negative C-film. The optical design is performed on a Poincar$\acute{e}$ sphere. This configuration has a better tolerance to the wavelength dispersion, as the polarization trace could self-compensate it. From calculations, we show that the proposed VA LC cell can improve the viewing angle characteristics by compensating for the light leakage in the diagonal direction.

  • PDF

Design of a transflective-type LCD using twisted vertical aligned mode (Twisted VA 모드를 이용한 반투과형 LCD의 설계)

  • 백봉진;도희욱;이서헌;윤태훈;김재창
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.565-569
    • /
    • 2003
  • We designed a transflective-type LCD using a twisted VA mode. Generally, a VA mode had a blue shift due to intrinsic properties. We solved this problem using spectroscopic compensation film. We used the front scattering film and negative C-plate to improve characteristics of the viewing angle and contrast ratio. As a result, we found that proposed the transflective-type TVA mode had a contrast ratio of about 80:1, a response time of 22 ms, and a reflectance of 25% in comparison with the standard MgO reflector.

Electro-optical performance using a PDT-VA cell (PDT-VA 셀을 이용한 전기광학 특성)

  • 김형규;황정연;서대식;한은주;김재형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.133-136
    • /
    • 2000
  • We investigated the improvement of viewing angle using a patterned double twisted (PDT) vertical-alignment (VA) cell mode on a homeotropic alignment layer. Good voltage-transmittance curves for negative dielectric anisotropic nematic liquid crystal (NLC) using the PDT-VA cell without a negative compensation film were obtained. The viewing angle of the PDT-VA cell without a negative compensation film was wider than that of a conventional VA cell.

  • PDF

Viewing angle improvement of TN mode by HD layer inside LC cell and a compensation film

  • Hong, Hyung-Ki;Lee, Jong-Hwae;Yoon, Sung-Whe
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.311-314
    • /
    • 2003
  • Holographic diffuser(HD) layer was demonstrated to be located inside LC cell for a transmissive LCD of TFT-array on Color Filter structure. Master pattern of this layer was generated by holographic method and this pattern was replicated by the stamping of the master pattern on UV resin. Combined with a compensation film, TN-mode LCD with this layer showed improved viewing angle characteristics, especially along the up-down direction.

  • PDF

An Offset-Compensated LVDS Receiver with Low-Temperature Poly-Si Thin Film Transistor

  • Min, Kyung-Youl;Yoo, Chang-Sik
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • The poly-Si thin film transistor (TFT) shows large variations in its characteristics due to the grain boundary of poly-crystalline silicon. This results in unacceptably large input offset of low-voltage differential signaling (LVDS) receivers. To cancel the large input offset of poly-Si TFT LVDS receivers, a full-digital offset compensation scheme has been developed and verified to be able to keep the input offset under 15 mV which is sufficiently small for LVDS signal receiving.

  • PDF

Electro-optical performance using a PDT-VA cell (PDT-VA 셀을 이용한 전기광학 특성)

  • 김형규;황정연;서대식;한은주;김재형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.133-136
    • /
    • 2000
  • We investigated the improvement of viewing angle using a patterned double twisted (PDT) vertical-alignment (VA) cell mode on a homeotropic alignment layer. Good voltage-transmittance curves for negative dielectric anisotropic nematic liquid crystal (NLC) using the PDT-VA cell without a negative compensation film were obtained. The viewing angle of the PDT-VA cell without a negative compensation film was wider than that of a conventional VA cell.

  • PDF

Electrogravimetric and Electrochemical Ac Response of Polypyrrole Films

  • Yang, Haesik;Lee, Hochun;Kwak, Juhyoun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.663-668
    • /
    • 1995
  • Ion transport of a polypyrrole/chloride (PPy/Cl) film and a polypyrrole/poly(styenesulfonate) (PPy/PSS) film as a function of applied dc potential was investigated by employing electrogravimetric impedance technique and electrochemical impedance technique. The cation and anion contribution to the whole charge capacitance and the diffusion coefficients of cation and anion in a PPy/PSS film were calculated by fitting the electrogravimetric impedance data with proposed model circuit. The diffusion coefficients of $Na^+$ in a 1 M $NaClO_4$ solution are over 1 order of magnitude larger than those of $ClO{_4}^-$, and $ClO{_4}^-$ contribution to charge compensation decreases as dc potential lowers. The charge compensation of a PPy/Cl film ir a 1 M CsCl solution is carried out largely by $Cl^-$ at 0.2 V vs. Ag/AgCl and by $Cs^+$ as well as $Cl^-$ at -0.4 V.

  • PDF

Temperature Compensation of Hot-film Flow Sensor (박막 히터형 유량센서의 온도보상)

  • Kim, Hyung-Pyo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.268-273
    • /
    • 2000
  • This paper represents a hot-film flow sensor which is compensated by a noble temperature compensation method using the initial unbalanced voltage. The resistance value of the sensor is determined by using the graph of the initial unbalanced voltage of an open-loop circuit against the air temperature. The compensation is accomplished by applying the unbalanced ratio of the resistors in the Wheastone bridge circuit. In the range of air temperature of $-20^{\circ}C{\sim}120^{\circ}C$, the error is about ${\pm}1%$.

  • PDF

Study on Electro-optic Characteristics of 45˚ Reflective Twisted Nematic Mode using an In-cell Retarder (내장형 위상자를 이용한 반사형 45˚ 비틀린 네마틱 액정 디스플레이의 전기광학 특성에 관한 연구)

  • Choi Min-Oh;Lim Young-Jin;Song Je-Hoon;Jang Won-Gun;Lee Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.427-431
    • /
    • 2006
  • We have studied electro-optic characteristics of reflective $45^{\circ}$ twisted nematic liquid crystal display which implement the new LC orientation using of in-cell retarder film. For the embodiment of reflective liquid crystal display, essentially the optic compensation films was always needed and attached to the outside of glass substrate. In our study, these optic compensation film were not employed in reflective LC cell. On other hand we have employed the in-cell retarder to substitute the optic compensation film and were able to orient the LC molecules using this in-cell retarder. So we have developed the reflective LC cell that has good optical performances without any additional coating process on the in-cell retarder.