• Title/Summary/Keyword: Compensated algorithm

Search Result 422, Processing Time 0.023 seconds

Gap Control Using Discharge Pulse Counting in Micro-EDM (미세 방전 가공에서의 방전 펄스 카운팅을 이용한 간극 제어)

  • Jung J.W.;Ko S.H.;Jeong Y.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.499-500
    • /
    • 2006
  • The electrode wear in micro-EDM significantly deteriorates the machining accuracy. In this regard, electrode wear needs to be compensated in-process to improve the product quality. Therefore, there are substantial amount of research about electrode wear. In this study a control method for micro-EDM using discharge pulse counting is proposed. The method is based on the assumption that the removed workpiece volume is proportional to the number of discharge pulses, which is verified from experimental results analyzing geometrically machined volume according to various number of discharges. Especially, the method has an advantage that electrode wear does not need to be concerned. The proposed method is implemented to an actual micro-EDM system using high speed data acquisition board, simple counting algorithm with 3 axis motion system. As a result, it is demonstrated that the volume of hole machined by EDM drilling can be accurately estimated using the number of discharge pulses. In EDM milling process a micro groove without depth variation caused by electrode wear could be machined using the developed control method. Consequently, it is shown that machining accuracy in drilling and milling processes can be improved by using process control based on the number of discharge pulses.

  • PDF

Design and Implementation of a TTIB Fading Compensation Systems for Narrowband Mobile Communication Systems (협대역 이동통신시스템에서 TTIB를 이용한 페이딩 보상 시스템의 설계 및 구현)

  • Lee, Byeong-Ro;Lim, Young-Hoe;Lim, Dong-MIn
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.19-26
    • /
    • 1998
  • In this paper, we studied the design and implementation of fading compensation systems at aspects of narrowband mobile communication using TTIB SSB. The mobile radio channel with multipath fading places fundamental limitations on the performance of wireless communication systems. The multipath fading is compensated using pilot tone in TTIB SSB. The TTIB transceiver was implemented using the prevailing digital signal processing (DSP) techniques and compensation for the multipath fading was incorporated in the receiver in the form of DSP algorithm. In order to evaluate fading compensation performance in TTIB transceiver, we first used computer simulation. In the simulation results, we found that the TTIB transceiver could compensate for the multipath fading as expected. Second, we carried out some experiments on TTIB transceiver implementation with DSP boards and later with hardwares including RF circuits with center frequency of 145MHz. Through these experiments, we found that fading compensation performance in TTIB transceiver was almost as good as that obtained from simulation.

  • PDF

Packet Detection and Frequency Offset Estimation/Correction Architecture Design and Analysis for OFDM-based WPAN Systems (OFDM-기반 WPAN 시스템을 위한 패킷 검출 및 반송파 주파수 옵셋 추정/보정 구조 설계 및 분석)

  • Back, Seung-Ho;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.30-38
    • /
    • 2012
  • This paper presents packet detection, frequency offset estimation architecture and performance analysis for OFDM-based wireless personal area network (WPAN) systems. Packet detection structure is used to find the start point of a packet exactly in WPAN system as the correlation value passes the constant threshold value. The applied autocorrelation structure of the algorithm can be implemented simply compared to conventional packet detection algorithms. The proposed frequency offset estimation architecture is designed for phase rotation process structure, internal bit reduction to reduce hardware size and the frequency offset adjustment block to reduce look-up table size unlike the conventional structure. If the received signal can be compensated by estimated frequency offset through the correction block, it can reduce the impact on the frequency offset. Through the performance result, the proposed structure has lower hardware complexity and gate count compared to the conventional structure. Thus, the proposed structure for OFDM-based WPAN systems can be applied to the initial synchronization process and high-speed low-power WPAN chips.

Shot Boundary Detection Algorithm by Compensating Pixel Brightness and Object Movement (화소 밝기와 객체 이동을 이용한 비디오 샷 경계 탐지 알고리즘)

  • Lee, Joon-Goo;Han, Ki-Sun;You, Byoung-Moon;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.35-42
    • /
    • 2013
  • Shot boundary detection is an essential step for efficient browsing, sorting, and classification of video data. Robust shot detection method should overcome the disturbances caused by pixel brightness and object movement between frames. In this paper, two shot boundary detection methods are presented to address these problem by using segmentation, object movement, and pixel brightness. The first method is based on the histogram that reflects object movements and the morphological dilation operation that considers pixel brightness. The second method uses the pixel brightness information of segmented and whole blocks between frames. Experiments on digitized video data of National Archive of Korea show that the proposed methods outperforms the existing pixel-based and histogram-based methods.

An analysis of the moving speed effect of the receiver array on the passive synthetic aperture signal processing (수동형 합성개구 신호처리에서 수신 배열 센서의 이동 속도에 대한 영향 분석)

  • Kim, Sea-Moon;Byun, Sung-Hoon;Oh, Sehyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.125-133
    • /
    • 2016
  • In order to obtain high-resolution seafloor images, research on SA (Synthetic Aperture) processing and the development of related underwater systems have been performed in many countries. Recently the SA processing is also recognized as an important technique in Korea and researchers started related basic study. However, most previous studies ignored the Doppler effect by a moving receiver array. In this paper reconstructed SAS (Synthetic Aperture Sonar) images and position errors are analyzed according to the speed of a moving array for understanding its moving effect on the SAS images. In the analysis the spatial frequency domain interpolation algorithm is used. The results show that as the moving speed of the array increases the estimated position error also increases and image distortion gets worse when we do not consider the array motion. However, if the compensated receiver signals considering the array motion are used the position error and image distortion can be eliminated. In conclusion a signal processing scheme which compensates the Doppler effect is necessary especially in the condition where the array speed is over 1 m/s.

A Study on the Shape-Based Motion Estimation For MCFI (MCFI 구현을 위한 형태 기반 움직임 예측에 관한 연구)

  • Park, Ju-Hyun;Kim, Young-Chul;Hong, Sung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.278-286
    • /
    • 2010
  • Motion Compensated Frame Interpolation(MCFI) has been used to reduce motion jerkiness for dynamic scenes and motion blurriness for LCD-panel display as post processing for large screen and full HD(high definition) display. Conventionally, block matching algorithms (BMA) are widely used to do motion estimation for simplicity of implementation. However, there are still several drawbacks. So in this paper, we propose a novel shape-based ME algorithm to increase accuracy and reduce ME computational cost. To increase ME accuracy, we do motion estimation based on shape of moving objects. And only moving areas are included for motion estimation to reduce computational cost. The results show that the computational cost is 25 % lower than full search BMA, while the performance is similar or is better, especially in the fast moving region.

2/3 Modulation Code and Its Vterbi Decoder for 4-level Holographic Data Storage (4-레벨 홀로그래픽 저장장치를 위한 2/3 변조부호와 비터비 검출기)

  • Kim, Gukhui;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.827-832
    • /
    • 2013
  • Holographic data storage system is affected by two dimensional intersymbol interference and inter-page interference. Especially, for multi-level holographic data storage system, since one pixel contains more than 1 bit, the system is more vulnerable to the error. In this paper, we propose a 2/3 modulation code for 4-level holographic data storage system. The proposed modulation code with error correcting capability could be compensated these interferences. Also, in this paper, we proposed a Viterbi decoder for 2/3 modulation code. The proposed Viterbi decoder eliminates unnecessary calculation. As a result, proposed 2/3 modulation code and Viterbi decoder has shown better performance than conventional one.

A compensation algorithm of cycle slip for synchronous stream cipher (동기식 스트림 암호 통신에 적합한 사이클 슬립 보상 알고리즘)

  • 윤장홍;강건우;황찬식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1765-1773
    • /
    • 1997
  • The communication systems which include PLL may have cycle clip problem because of channel noise. The cycle slip problem occurs the synchronization loss of communication system and it may be fatal to the synchronous stream cipher system. While continuous resynchronization is used to lessen the risk of synchronization it has some problems. In this paper, we propose the method which solve the problems by using continuous resynchronization with the clock recovery technique. If the counted value of real clock pulse in reference duration is not same as that of normal state, we decide the cycle slip has occurred. The damaged clock by cycle slip is compensated by adding or subtracting the clock pulse according to the type of cycle slip. It reduced the time for resynchronization by twenty times. It means that 17.8% of data for transmit is compressed.

  • PDF

Macroblock-based Adaptive Interpolation Filter Method Using New Filter Selection Criterion in H.264/AVC (H.264/AVC에서 새로운 필터 선택 기준을 이용한 매크로 블록 기반 적응 보간 필터 방법)

  • Yoon, Kun-Su;Moon, Yong-Ho;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.312-320
    • /
    • 2008
  • The macroblock-based adaptive interpolation filter method has been considered to be able to achieve high coding efficiency in H.264/AVC. In this method, although the filter selection criterion considered in terms of rate and distortion have showed a good performance, it still leaves room for improvement. To improve high coding efficiency better than conventional method, we propose a new filter selection criterion which considers two bit rates, motion vector and prediction error, and reconstruction error. In addition, the algorithm for reducing the overhead of transmitting the selected filter information is presented. Experimental results show that the proposed method significantly improves the coding efficiency compared to ones using conventional criterion. It leads to about a 5.19% (1 reference frame) and 5.14% (5 reference frames) bit rate savings on average compared to H.264/AVC, respectively.

Fruit Grading Algorithms of Multi-purpose Fruit Grader Using Black at White Image Processing System (흑백영상처리장치를 이용한 다목적 과실선별기의 등급판정 알고리즘 개발)

  • 노상하;이종환;황인근
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.95-103
    • /
    • 1995
  • A series of study has been conducted to develop a multi-purpose fruit grader using a black & white image processing system equipped with a 550 nm interference filter. A device and high performance algorithms were developed for sizing and color grading of Fuji apple in the previous study. In this study an emphasis was put on finding correlations between weights of several kinds of fruits and their area fractions(AF), and on compensating the blurring effect upon sizing and color grading by conveying speed of fruit. Also, the effect of orientation and direction of fruit on conveyor during image forming was analyzed to identify any difficulty (or utilizing an automatic fruit feeder. The results are summarized as follows. 1. The correlation coefficients(r) between the weights of fruits and their image sizes were 0.984~0.996 for apples, 0.983~0.990 for peachs, 0.995 for tomato, 0.986 for sweet persimmon and 0.970~0.993 for pears. 2. It was possible to grade fruits by color with the area weighted mean gray values(AWMGV) based on the mean gray valves of direct image and the compensated values of reflected image of a fruit, and also possible to sort fruits by size with AF. Accuracies in sizing and color grading ranged over 81.0% ~95.0% and 82.0% ~89.7% respectively as compared with results from sizing by electronic weight scale and grading by expert. 3. The blurring effect on the sizing and color grading depending on conveying speed was identified and regression equations were derived. 4. It was found that errors in sizing and coloring grading due to the change in direction and orientation of Fuji apple on the conveyor were not significant as far as the stem end of apple keeping upward.

  • PDF