• Title/Summary/Keyword: Compartment Model

Search Result 315, Processing Time 0.03 seconds

A Numerical Study on the Fire Behavior Phenomena in a Special Fire Protection Compartment (특수 방호공간에서 가상화재의 발생으로 인한 화재거동에 관한 수치적 연구)

  • Kim, Tae-Kuk;Son, Bong-Sei
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.157-163
    • /
    • 2001
  • The objective of the present study is to predict the characteristics of the fire and smoke propagations in a clean room. Numerical calculations have been performed by using the finite volume method to obtain temperature and velocity distributions in the clean room. In odor to account for the turbulent flow characteristics, the standard $k-{\varepsilon}$ model is used. From this study, it was found that the fire propagation could be fully developed only after 150 seconds when the ventilation system in the clean room was off. And the smoke mass fraction showed a similar distribution as the gas temperature. Since the simulated fire was proceeded up to $20{\sim}30%$ of the room within 60 seconds. it could be recommended that the occupants should be evacuated from the room within 30 seconds.

  • PDF

Quantification of myocardial blood low using dynamic N-13 ammonia PET and actor analysis (N-13 암모니아 PET 동적영상과 요소분석을 이용한 심근 혈류량 정량화 방법 개발)

  • Kim, J.Y.;Choi, Y.;Im, K.C.;Choe, Y.S.;Lee, K.H.;Kim, S.E.;Kim, Y.J.;Kim, B.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.575-578
    • /
    • 1997
  • Myocardial blood low (MBF) in human can be noninvasively quantified using dynamic N-13 ammonia PET and two-compartment tracer kinetic model. In this study, factor analysis was used to extract the "pure" blood-pool time-activity curves (TACs) and to generate actor images. ive human N-13 ammonia PET dynamic studies were obtained. Three actors and their corresponding actor images were extracted rom each study. The accuracy of MBF estimated by the actor analysis (FA/FA MBF) was examined by comparing to the values estimated using the conventional ROI method (ROI/ROI MBF). MBF obtained by the actor analysis linearly correlated with MBF obtained by the ROI method (slope=0.98, r=0.91). Input unctions obtained by the two methods agreed well. In conclusion, MBF can be measured accurately and noninvasively with dynamic N-13 ammonia PET imaging and actor analysis. This method is simple and acurate and can measure MBF without blood sampling, ROI drawing nor spillover correction.

  • PDF

Calculation of a First-In-Man Dose of 7-O-Succinyl Macrolactin A Based on Allometric Scaling of Data from Mice, Rats, and Dogs

  • Noh, Keumhan;Kang, Wonku
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.648-658
    • /
    • 2017
  • 7-O-Succinyl macrolactin A (SMA) exerts several pharmacological effects including anti-bacterial, anti-inflammation, and anti-cancer activities. Recently, SMA has been extensively evaluated as an anti-cancer drug. Thus, the objectives of the present study were to characterise the pharmacokinetics of SMA via both non-compartmental and compartmental analysis in mice, rats, and dogs, and to derive an appropriate first-in-man dose based on allometric scaling of the animal data. The time courses of plasma SMA concentrations after intravenous administration to rats and dogs were analysed retrospectively, as were data collected after intraperitoneal SMA injection in mice. Pharmacokinetic parameters were estimated via both noncompartmental and compartmental analysis, and were correlated with body weight and/or the potential maximum life-span. The clearance and distribution volume of SMA in humans were predicted, and a first-in-man dose proposed. A two-compartment model best described the time courses of SMA plasma concentrations after a saturation elimination process was applied to fit the dataset obtained from rats. Incorporation of the maximum potential life-span during allometric scaling was required to improve the estimation of human clearance. The SMA clearance and the distribution volume in the steady state, in a 70-kg adult male, were estimated to be 30.6 L/h and 19.5 L, respectively. To meet the area under the curve (AUC) required for anti-tumour activity, a dose of 100 mg (~1.5 mg/kg) was finally proposed as the first dose for a 70-kg human. Although toxicological profiles derived from non-clinical studies must be considered before any final decision is made, our work will facilitate clinical studies on SMA.

An Investigation of Quantitative Risk Assessment Methods for the Thermal Failure in Targets using Fire Modeling (화재모델링을 이용한 목표 대상물의 열적 손상에 대한 정량적 위험성 평가방법의 고찰)

  • Yang, Ho-Dong;Han, Ho-Sik;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.116-123
    • /
    • 2016
  • The quantitative risk assessment methods for thermal failure in targets were studied using fire modeling. To this end, Fire Dynamics Simulator (FDS), as a representative fire model, was used and the probabilities related to thermal damage to an electrical cable were evaluated according to the change in fire area inside a specific compartment. 'The maximum probability of exceeding the damage thresholds' adopted in a conservative point of view and 'the probability of failure' including the time to damage were compared. The probability of failure suggested in the present study could evaluate the quantitative fire risk more realistically, compared to the maximum probability of exceeding the damage thresholds with the assumption that thermal damage occurred the instant the target reached its minimum failure criteria in terms of the surface temperature and heat flux.

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

Bioavailability of Ranitidine Tablets in Rats (흰쥐에서 라니티딘제제의 생체이용률)

  • 이미숙;구영순
    • YAKHAK HOEJI
    • /
    • v.39 no.6
    • /
    • pp.636-644
    • /
    • 1995
  • Comparison of bioavailabflity (BA) of three brands of ranitidine (RT) tablets has been studied m rats. The purpose of this study was to characterize the pharniacolunetics of RT tablets in the rat and to coinpare phannacolunetic parameters of three brands of RT tablets. In addition, it was investigated whether plasma RT concentrations m humans can be predicted from pharmacokinetic parameters obtained in rats. RT was administered intravenously in dose of RT.HCI 10mg/kg and orally in dose of RT.HCI 50mg/kg as solution or crushed sample of thablets. Plasma RT concentrations were determned by HPLC. Plasma RT concentrations as a function of time were fitted to two compartment model. Plasma RT concentrations declined with a terminal half life ($t_{{1}/2{\betha}}$) of 40.9 min. The plasma RT concentration-time curve showed two peak plasma concentrations following an oral administration of solution or crushed sample in rats like humans. No significant difference among pharmacokinetic parameters was observed except $T_{max2}$ (p<0.05). The BA for crushed sample A, B and C were found to be 54.6 40.7 and 40.0%, respectively. Equivalence of $C_{max1}$ and $T_{max2}$ were guaranteed in this study. However, it was concluded that three brands of RT tablets are bioequivalent, taking the following characteristics of RT into consideration;(1) rapid onset of the effect is not required, (2) $C_{max1}$ and $T_{max2}$ do not seem to influence the effectiveness of the drug during a long-term treatment by the usual administration of twice a day. Results from this study were combined with plarmacokinetic data for RT in dogs and humans to develop a basis for interspecies scale-up of the disposition characteristics of the drug. there were similarities in the general disposition of the drug. Allometric relationships were sought between pharmacokinetic parameters nd species body weight. Significant interspecies correlations were found for total body clearance($Cl_{t}$) and steady state volume of distribution ($Bd_{ss}$). Thus, plasma RT concentrations in humans can be predicted from pharmacokinetic parameters obtained in rats.

  • PDF

Preliminary Performance Assessment of a Fuel-Cell Powered Hypersonic Airbreathing Magjet

  • Bernard Parent;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.703-712
    • /
    • 2004
  • A variant of the magnetoplasma jet engine (magjet) is here proposed for airbreathing flight in the hypersonic regime. As shown in Figure 1, the engine consists of two distinct ducts: the high-speed duct, in which power is added electromagnetically to the incoming air by a momentum addition device, and the fuel cell duct in which the flow stagnation temperature is reduced by extracting energy through the use of a magnetoplas-madynamic (MPD) generator. The power generated is then used to accelerate the flow exiting the fuel cells with a fraction bypassed to the high-speed duct. The analysis is performed using a quasi one-dimensional model neglecting the Hall and ion slip effects, and fix-ing the fuel cell efficiency to 0.6. Results obtained show that the specific impulse of the magjet is at least equal to and up to 3 times the one of a turbojet, ram-jet, or scramjet in their respective flight Mach number range. Should the air stagnation temperature in the fuel cell compartment not exceed 5 times the incoming air static temperature, the maximal flight Mach number possible would vary between 6.5 and 15 for a magnitude of the ratio between the Joule heating and the work interaction in the MPD generator varied between 0.25 and 0.01, respectively. Increasing the mass flow rate ratio between the high speed and fuel cell ducts from 0.2 to 20 increases the engine efficiency by as much as 3 times in the lower supersonic range, while resulting in a less than 10% increase for a flight Mach number exceeding 8.

  • PDF

Pharmacokinetics of oxytetracycline in olive flounder (Paralichthys olivaceus) by dipping and oral administration (Oxytetracycline의 약욕 및 경구투여에 따른 넙치(Paralichthys olivaceus) 체내 약물동태학적 특성)

  • Jung, Sung-Hee;Choi, Dong-Lim;Kim, Jin-Woo;Jo, Mi-Ra;Seo, Jung-Soo;Jee, Bo-Young
    • Journal of fish pathology
    • /
    • v.21 no.2
    • /
    • pp.107-117
    • /
    • 2008
  • The pharmacokinetic properties of oxytetracycline (OTC) were studied after dipping and oral administration to cultured olive flounder, Paralichthys olivaceus (600 g). Plasma concentrations of OTC were determined after oral dosage (50, 100 and 200 mg/kg body weight) and dipping (50, 100 and 200 ppm, 1 h) in olive flounder (average 600 g, 23±1℃). Plasma samples were taken at 3, 5, 10, 15, 24, 32, 48, 72, 120, 168 and 240 h post-dose. In oral dosage of 50, 100 and 200 mg/kg, the peak plasma concentrations of OTC, which attained at 3 h post-dose, were 0.34, 0.44 and 1.18 ㎍/㎖, respectively. In dipping of 50, 100 and 200 ppm, those of OTC which also observed at 5 h post-dose, were 0.43, 0.38 and 0.64 ㎍/㎖, respectively. Plasma concentrations of OTC were not measurable at 240 h post-dose in all experiments. The kinetic profile of absorption, distribution and elimination of OTC in plasma were analyzed fitting to a one-compartment model by WinNonlin program. The following parameters were calculated for a single dosage of 50, 100 and 200 mg/kg body weight, respectively: AUC (the area under the concentration-time curve)=31.40, 28.07 and 32.97 ㎍∙h/㎖; T1/2 (half-life)􀆫0.89, 1.12 and 0.43 h; Tmax (time for maximum concentration)= 5.25, 3.70 and 7.30 h, Cmax (maximum concentration)=0.25, 0.38 and 0.61 ㎕/㎖. Following dipping at 50, 100 and 200 ppm, these parameters were AUC􀆫15.51, 14.63 and 19.72 ㎍∙h/㎖; T1/2= 0.75, 0.41 and 0.74 h; Tmax=4.90, 7.08 and 4.68 h, Cmax=0.40, 0.32 and 0.46 ㎕/㎖.

Development of a user-friendly training software for pharmacokinetic concepts and models

  • Han, Seunghoon;Lim, Byounghee;Lee, Hyemi;Bae, Soo Hyun
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.166-171
    • /
    • 2018
  • Although there are many commercially available training software programs for pharmacokinetics, they lack flexibility and convenience. In this study, we develop simulation software to facilitate pharmacokinetics education. General formulas for time courses of drug concentrations after single and multiple dosing were used to build source code that allows users to simulate situations tailored to their learning objectives. A mathematical relationship for a 1-compartment model was implemented in the form of differential equations. The concept of population pharmacokinetics was also taken into consideration for further applications. The source code was written using R. For the convenience of users, two types of software were developed: a web-based simulator and a standalone-type application. The application was built in the JAVA language. We used the JAVA/R Interface library and the 'eval()' method from JAVA for the R/JAVA interface. The final product has an input window that includes fields for parameter values, dosing regimen, and population pharmacokinetics options. When a simulation is performed, the resulting drug concentration time course is shown in the output window. The simulation results are obtained within 1 minute even if the population pharmacokinetics option is selected and many parameters are considered, and the user can therefore quickly learn a variety of situations. Such software is an excellent candidate for development as an open tool intended for wide use in Korea. Pharmacokinetics experts will be able to use this tool to teach various audiences, including undergraduates.

Numerical Investigation on Fire of Stage in Theater: Effects of Natural Smoke Vent Area and Fire Source Location (공연장 무대부 화재에 대한 전산해석 연구: 자연 배연구 면적과 화원 위치 영향)

  • Park, Min Yeong;Lee, Chi Young
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This numerical study investigates the effects of the size of the natural smoke vent area (10% and 1% of the floor area) and the location of the fire source (i.e., at the side and center of the stage) on the temperature distribution in the compartment and velocity distribution and mass flow rate of flow through a natural smoke vent for a reduced-scale model of a theater stage. Then, the mass flow rate of outflow through the natural smoke vent in the event of a fire for a real-scale theater stage was examined. The case with the larger natural smoke vent area and central fire source location showed lower temperature distributions and higher mass flow rates of outflow and inflow than the case with the smaller natural smoke vent area and side fire source location. The trends of the temperature distributions were closely related to those of the mass flow rates for the outflow and inflow. Additionally, the case with the larger natural smoke vent area and central fire source location exhibited the most non-uniform flow velocity distribution in all cases tested. A bidirectional flow, in which the outflow and inflow occur simultaneously, was observed through the natural smoke vent. In the event of a fire situation in a real-scale theater stage, it was predicted that the case with the larger natural smoke vent area and central fire source location would have a mass flow rate of outflow that is 43.53 times higher than that of the case with the smaller natural smoke vent area and side fire source location. The present results indicate that the natural smoke vent location should be determined by considering the location in a theater stage where a fire can occur.