• Title/Summary/Keyword: Compartment Model

Search Result 315, Processing Time 0.026 seconds

Estimation of Tritium Concentration in the Environment based upon Global Tritium Cycling Model (글로벌 삼중수소 순환 모델을 이용한 삼중수소 환경 방사능 추정)

  • Choi, Heui-Joo;Lee, Han-Soo;Kang, Hee-Suk;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The periodic safety review of operational nuclear power plants requires that the plants should keep a well organized environmental monitoring program. The past records of environment monitoring data were analyzed. and the tritium concentrations of the samples in the surface and ground water around Kori site were measured. It was shown that the tritium concentrations around the Kori site were slightly higher than that of natural background. The change of background tritium concentration was estimated through a numerical modeling. Two different versions of 7 compartments model - the world and the northern hemisphere - defined in NCRP-62 were modeled for the global tritium cycling. The numerical solution of the model was obtained using a computer program, AMBER. The four cases of tritium source-terms into the atmosphere were considered. The results showed that the tritium concentration in the surface soil water was higher than that in sea water or surface stream water. Also, it was shown that the tritium produced by the interaction between cosmic rays and the gases were the major source of tritium, and the tritium produced by nuclear weapon test decreased considerably.

Synthesis and characterization of poly(vinyl-alcohol)-poly(β-cyclodextrin) copolymer membranes for aniline extraction

  • Oughlis-Hammache, F.;Skiba, M.;Hallouard, F.;Moulahcene, L.;Kebiche-Senhadji, O.;Benamor, M.;Lahiani-Skiba, M.
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.223-240
    • /
    • 2016
  • In this study, poly(vinyl-alcohol) and water insoluble ${\beta}$-cyclodextrin polymer (${\beta}$-CDP) cross-linked with citric acid, have been used as macrocyclic carrier in the preparation of polymer inclusion membranes (PIMs) for aniline (as molecule model) extraction from aqueous media. The obtained membranes were firstly characterized by X-ray diffraction, Fourier transform infrared and water swelling test. The transport of aniline was studied in a two-compartment transport cell under various experimental conditions, such as carrier content in the membranes, stirring rate and initial aniline concentration. The kinetic study was performed and the kinetic parameters were calculated as rate constant (k), permeability coefficient (P) and flux (J). These first results demonstrated the utility of such polymeric membranes for environmental decontamination of toxic organic molecules like aniline. Predictive modeling of transport flux through these materials was then studied using design of experiments; the design chosen was a two level full factorial design $2^k$. An empirical correlation between aniline transport flux and independent variables (Poly ${\beta}$-CD membrane content, agitation speed and initial aniline concentration) was successfully obtained. Statistical analysis showed that initial aniline concentration of the solution was the most important parameter in the study domain. The model revealed the existence of a strong interaction between the Poly ${\beta}$-CD membrane content and the stirring speed of the source solution. The good agreement between the model and the experimental transport data confirms the model's validity.

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF

Pharmacokinetics of a New Histone Hl Protein (p961), an Arthritis-suppressing Agent, in Rats and Rabbits (항류마치스 효과를 갖는 새로운 히스톤 H1 단백질 (p961)의 흰쥐와 토끼에 대한 약물동태)

  • 우수경;윤민혁;이재흥;권광일
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.378-386
    • /
    • 2001
  • A purified histone Hl protein, p961, which plays a role in mediating the condensation of DNA into chromatin, was recently proved as an arthritis-suppressing agent in the mouse CIA model. The pharmacokinetics of p961 was carried out in rats and rabbits. The rat's blood, bile and urine samples were serially collected from the femoral vein, common bile duct, and bladder respectively, after bolus i.v. injection at low (10 mg/kg) and high (30 mg/mg) doses. The rabbit's blood samples were also collected from the marginal ear vein after bolus i.v. injection at a dose 10 mg/kg. p961 and its major metabolite in the physiological samples were analyzed by reverse-phase HPLC using a Yydac C4 protein column and a multistep water-acetonitrile gradient containing 0.24% trifluoroacetic acid. The major pharmacokinetic parameters (AUC, $C_{max}$, MRT, $t_{1}$2/, $V_{ss}$ and Cl) were estimated from the time course of plasma p961 and metabolite concentrations using WinNonlin. A two-compartment model was chosen for p961 as the most appropriate pharmacokinetic model. After i.v. injection of p961 at doses of 10 mg/kg and 30 mg/kg, more than 80% of p961 was removed rapidly from the plasma within 15 min. The plasma half-life of p961 in rats and rabbits was found not to exceed 12 min. p961 (22448.9 mol wt) was rapidly cleaved to 21612 mot wt fragment and the breakdown product appeared rapidly in the circulation with no lag phase. p961 and metabolite were not detected in rat urine and bile....

  • PDF

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

A Convergent Investigation on the Air flow in Driving According to a Cargo Container and the Wind Deflector (트럭 화물칸 및 윈드 디플렉터에 따른 운행중 공기흐름에 대한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.175-180
    • /
    • 2020
  • In this study, the freight vehicles were modelled and the flow analysis on the existence or non-existence of a cargo container and the wind deflector were carried out. Based on the driving speed of 100 km/hr, at all models A, B and C, the highest flow rate was shown between 58 m/s and 59 m/s at the top of the model shape. All models A, B and C showed the highest pressure of air resistance between 652Pa and 671Pa at the front of the model geometry. The maximum pressure of model A is considered to be the smallest, with the least flow resistance to speed compared to models B and C. Therefore, it can be seen that model A has an advantageous condition for air resistance in terms of fuel costs. Unlike model B which causes the rapid flow resistance at the cargo compartment, model C can be found to flow a little more smoothly on the streamlined wind deflector. So, the flow air at a streamlined shape is considered to be more advantageous in terms of air resistance than at angular shape. By applying the research analysis result on the air flow in driving according to a cargo container and the wind deflector, it is seen that this study is adequate at the practical efficient design and aesthetic convergence.

Gastrointestinal Absorption of Phenytoin from on Oil-in-water Microemulsion

  • Kwon, Kwang-Il;Bourne, David-W.A.
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.480-485
    • /
    • 1997
  • The absorption profile of phenytoin Na emulsion were examined compared to that of phenytoin suspension after oral administration in the rat. The corn oil-in-water emulsion, particle size of $184{\pm}$57.8 nm, was prepared using a microfludizer, and phenytoin Na added by shaft homogenizer. The phenytoin emulsion or suspension, 100 mg/kg, were intubated intragastrically using oral dosing needle and blood samples were withdrawn via an indwelling cannula from the conscious rat. Plasma concentrations of phenytoin were measured with HPLC using phenacetin as an internal standard. The plasma concentration versus time data were fitted to a one compartment open model and the pharmacokinetic parameters were calculated using the computer program, Boomer. The phenytoin plasma concentrations from the emulsion at each observed time were about 1.5-2 times higher than those from the suspension, significantly at time of 5, 6 and 7 hr after administration. The absorption $(k_a)$ and elimination rate constant $(k_e)$ were not altered significantly, however the AUC increased from 65.6 to $106.7{\mu}ghr/ml$ after phenytoin suspension or emulsion oral administration, respectively. From an equilibrium dialysis study, the diffusion rate constant $(k_{IE})$ was considerably higher from the phenytoin Na emulsion $(0.0439 hr{-1})$ than phenytoin suspension $(0.0014 hr{-1})$.

  • PDF

Reduction of Skin Irritation by the Control of Skin Permeation of Methyl Paraben

  • Seong-Hoon Jeong;Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.108-114
    • /
    • 1997
  • The skin permeation study has two meanings in cosmetics. One is how to promote the skin permeation of active meterials for improving their bioavailabilities and the other is how to decrease it of irritants for reducing their skin side effects. In this study, we selected methyl paraben, one of the preservatives, as a model irritant and tried to reduce the skin irritation by the decrease of skin permeation. Furthermore, the relationship between skin permeation and skin primary irritation was discussed. For in vitro skin permeation experiments, Franz type diffusion cells and the excised skin of female hairless mouse from 8 weeks old were used. The donor compartment was charged with oil only or O/W emulsion containing 0.3% MP. We selected 19 oils, including esters, triglycerides, plant oils, hydrocarbons, and alchols, which are broadly used in cosmetics. We evaluated with female guinea pig. The skin permeahility of MP from the oils showed following order: ester oils > triglycerides > plant oils > hydrocarbons > alcohols. We considered that this result was based on the different effect of each oil on the barrier function of stratum corneum. In O/W emulsion containing each oil, the skin permeability of MP decreased as the oil/water partition coefficient of MP increased. The skin primary irritation increased as the skin permeability of MP increased. In conclusion, we suggest that the skin irritation could be reduced by the decrease of skin permeability of MP, which may be obtained by the good selection of oils in cosmetic preparations.

  • PDF

CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame (질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성)

  • Lee, Ho-Hyun;Oh, Chang Bo;Hwang, Cheol Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

Pharmacokinetic Study of Florfenicol in Healthy and Vibriosis-infected Pseudosciaena crocea after Oral Administration

  • Wang, Li;Han, Yan-nan;Jin, Shan;Ma, Yin;Wang, Guo-liang;Zhao, Qing-song;Chen, Yin-er
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.363-368
    • /
    • 2015
  • The pharmacokinetics of florfenicol were studied in healthy and vibriosis-infected large yellow croaker (Pseudosciaena crocea) following administration of a single oral dose of $20mg{\cdot}kg^{-1}$ at $25{\pm}2^{\circ}C$. After oral administration, florfenicol levels in tissues (liver, kidney, muscle, serum, and skin) were analyzed using high-performance liquid chromatography. A two-compartment open model was used to describe the pharmacokinetics of florfenicol following oral administration. Compared to the healthy group, the absorption rate of vibriosis-infected fish significantly decreased, peak-time ($T_{max}$) delayed, maximum concentration ($C_{max}$) declined, total body clearance decreased, the elimination half-life ($T_{1/2{\beta}}$) was extended, and the area under the curve increased. These results indicate that a $20mg{\cdot}kg^{-1}$ oral dose of florfenicol administered once daily continuously for 4 or 5 days can be used for the treatment of Vibrio alginolyticus infection in large yellow croaker (Pseudosciaena crocea).