• Title/Summary/Keyword: Compartment Model

Search Result 313, Processing Time 0.022 seconds

Development of an Object-Oriented Initial Hull Structural Design System (객체 지향 초기 선체 구조 설계 시스템 개발)

  • Roh M.-I.;Lee K.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.244-253
    • /
    • 2005
  • In the initial ship design stage of shipyards, the hull form design, the basic design (compartment modeling and ship calculation), and the hull structural design are being performed by different systems. Thus, the problem on interfaces between these systems occurs. To solve this, we developed the hull form design system 'EzHULL' and the compartment modeling and ship calculation system 'EzCOM-PART' for developing finally an integrated ship design system. And, in this study, we present an object-oriented hull structural design .system 'EzSTRUCT', which is developed recently. A structural design in an initial design stage can be frequently changed, because the design is not firmly determined yet. Therefore, designers perform the simplified structural modeling with bigger structural parts (or objects) such as deck, longitudinal bulkhead, etc. in the initial design stage, and the detailed structural modeling with smaller structural parts such as plate, seam, slot, etc. in the detailed design stage. However, the existing hull structural CAD system used in a shipyard is not efficient in generating a 3D CAD model in the initial design stage, because it has difficulty in handling frequent changes in design. Therefore, designers initially draw 2D drawings in the initial design stage, and generate the 3D CAD model from these 2D drawings in the detailed design and production design stages. In this study, the hull structural design system, which can efficiently generate a 3D CAD model through rapid modeling at an initial design stage, was developed in this study To evaluate the applicability of the developed system, we applied it to hull structural modeling of various ships such as a VLCC, a bulk carrier, etc. As a result, it could efficiently generate a 3D CAD model of a hull structure.

Sorption and Desorption Kinetics of Naphthalene and Phenanthrene on Black Carbon in Sediment (퇴적물내 Black Carbon에 대한 Naphthalene과 Phenanthrene의 수착 및 탈착동력학)

  • Oh, Sang-Hwa;Wu, Qi;Song, Dong-Ik;Shin, Won-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.79-94
    • /
    • 2011
  • Black carbon (BC), a kind of high surface area carbonaceous material (HSACM), was isolated from Andong lake sediment. Sorption and desorption kinetics of naphthalene (Naph) and phenanthrene (Phen) in organic carbon (OC) and BC in the Andong lake sediment were investigated. Several kinetic models such as one-site mass transfer model (OSMTM), two-compartment first-order kinetic model (TCFOKM), and a newly proposed modified two-compartment first-order kinetic model (MTCFOKM) were used to describe the sorption and desorption kinetics. The MTCFOKM was the best fitting model. The MTCFOKM for sorption kinetics showed that i) the sorbed amounts of PAHs onto BC were higher than those onto OC, consistent with BET surface area; ii) the equilibration time for sorption onto BC was longer than those onto OC due to smaller size of micropore ($11.67{\AA}$) of BC than OC ($38.18{\AA}$); iii) initial sorption velocity of BC was higher than OC; and iv) the slow sorption velocity in BC caused the later equilibrium time than OC even though the fast sorption velocity was early completed in both BC and OC. The MTCFOKM also described the desorption of PAHs from the OC and BC well. After desorption, the remaining fractions of PAHs in BC were higher than those in OC due to stronger PAHs-BC binding. The remaining fractions increased with aging for both BC and OC.

Modeling of Particle Removal in the Coarse Media of Direct Horizontal-Flow Roughing Filtration (Direct Horizontal-Flow Roughing Filtration의 조립 여상에서의 입자 제거 모델링)

  • Ahn, Hyo-Won;Park, No-Suk;Lee, Sun-Ju;Lee, Kyung-Hyuk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.338-347
    • /
    • 2005
  • Horizontal-Flow Roughing Filtration (HRF) is one of altemative pretreatment methods e.g. prior to Slow Sand Filtration (SSF). However, some of its limitations are that the effluent quality drops drastically at higher turbidity (>200 NTU) and at higher filtration rate (>1 m/h). To overcome these drawbacks, we suggested Direct Horizontal-Flow Roughing Filtration (DHRF), which is a modified system of Horizontal-Flow Roughing (HRF) by addition of low dose of coagulant prior to filtration. In this study to optimize the DHRF configuration, a conceptual and mathematical model for the coarse compartment has been developed in analogy with multi-plate settlers. Data from simple column settling test can be used in the model to predict the filter performance. Furthermore, the model developed herein has been validated by successive experiments carried out. The conventional column settling test has been found to be an handy and useful to predict the performance of DHRF for different raw water characteristics (e.g. coagulated or uncoagulated water, different presence of organic matter, etc.) and different inital process conditions (e.g. coagulant dose, mixing time and intensity, etc.). An optimum filter design for the coarse compartment (grain size 20mm) has been found to be of 3 m/h filtration rate with filter length of 4-4.5 m.

Effect of temperature on pharmacokinetics of nalidixic acid, piromidic acid and oxolinic acid in olive flounder Paralichthys olivaceus following oral administration (넙치, Paralichthys olivaceus에 nalidixic acid, piromidic acid, oxolinic acid의 경구투여 약물동태에 미치는 수온의 영향)

  • Jung, Sung-Hee;Kim, Jin-Woo;Seo, Jung-Soo;Choi, Dong-Lim;Jee, Bo-Young;Park, Myoung-Ae
    • Journal of fish pathology
    • /
    • v.23 no.1
    • /
    • pp.57-67
    • /
    • 2010
  • Effects of temperature ($13{\pm}1.5^{\circ}C$, $23{\pm}1.5^{\circ}C$) on the pharmacokinetic properties of nalidixic acid (NA), piromidic acid (PA) and oxolinic acid (OA) were studied after oral administration to cultured olive flounder, Paralichthys olivaceus. Serum concentrations of these antimicrobials were determined after oral administration of a single dosage of 60 mg/kg body weight (average 700 g). At $23{\pm}1.5^{\circ}C$, the peak serum concentrations of NA, PA and OA, which attained at 10 h, 24 h and 30 h post-dose, were 11.55, 3.79 and $1.12{\mu}g/m\ell$, respectively. At $13{\pm}1.5^{\circ}C$, the peak serum concentrations of NA, PA and OA, which attained at 10 h, 15 h and 30 h post-dose, were 6.36, 1.4 and $1.01{\mu}g/m\ell$, respectively. Better absorption of NA and PA was noted at $23{\pm}1.5^{\circ}C$ compared to $23{\pm}13^{\circ}C$. The elimination of NA from serum of olive flounder was considerably faster at $23{\pm}1.5^{\circ}C$ than at $13{\pm}1.5^{\circ}C$. However, both absorption and elimination of OA were not affected significantly by temperature. The kinetic profile of absorption, distribution and elimination of these antimicrobials in serum were analyzed by fitting to a one- and two compartment model, with WinNonlin program. In the one compartment model for NA, AUC, Tmax and Cmax at $23{\pm}1.5^{\circ}C$ were $258.26{\mu}g{\cdot}h/m\ell$, 10.67 h and $8.91{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $C_{max}$ at $13{\pm}1.5^{\circ}C$ were $341.45 {\mu}g{\cdot}h/m\ell$, 7.72 h and $6.23{\mu}g/m\ell$, respectively. In the one compartment model for PA, AUC, $T_{max}$ and $C_{max}$ at $23{\pm}1.5^{\circ}C$ were $248.12{\mu}g{\cdot}h/m\ell$, 21.15 h and $3.09{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $C_{max}$ at $13{\pm}1.5^{\circ}C$ were $103.89{\mu}g{\cdot}h/m\ell$, 12.89 h and $1.22{\mu}g/m\ell$, respectively. In the two compartment model for OA, AUC, $T_{max}$ and $C_{max}$ at $23{\pm}1.5^{\circ}C$ were $138.20{\mu}g{\cdot}h/m\ell$, 23.95 h and $1.06{\mu}g/m\ell$, respectively. The AUC, $T_{max}$ and $T_{max}$ at $13{\pm}1.5^{\circ}C$ were $159.10{\mu}g{\cdot}h/m\ell$, 28.03 h and $1.02{\mu}g/m\ell$, respectively.

Prediction Performance of FDS on the Carbon Monoxide Production in the Under-Ventilated Fires (환기부족 화재에서 일산화탄소 발생에 대한 FDS의 예측성능)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.93-99
    • /
    • 2011
  • In the present study, a numerical simulation was conducted to estimate the prediction performance of FDS on the carbon monoxide production in the under-ventilated compartment fires. Methane and heptane fires located in the a 2/5 scale compartment based on the ISO-9705 standard room was simulated using FDS Ver. 5.5. Through the comparison between the computed results and the earlier published experimental data, the performance of FDS was estimated on the predictions of the combustion gases concentration in the hot upper layer of the compartment and the effects of CO yield rate on the estimation of CO production at local points were analyzed. From the results, it was known that FDS Ver. 5.5, in which the two-step reaction mixture fraction model implemented, was more effective on the prediction of CO concentration compared to the previous FDS version. In addition, controlling CO yield rate made the predicted CO concentration get closer to the experimental data for the fires of the under-ventilated condition.

Biosphere Modeling for Dose Assessment of HLW Repository: Development of ACBIO (고준위 방사성패기물 처분장 생태계 모델링을 위한 ACBIO개발)

  • Lee, Youn-Myoung;Hwang, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.73-100
    • /
    • 2008
  • For the purpose of evaluating dose rate to individual due to long-term release of nuclides from the HLW repository, a biosphere assessment model and the implemented code, ACBIO, based on BIOMASS methodology have been developed by utilizing AMBER, a general compartment modeling tool. To show its practicability and usability as well as to see the sensitivity of compartment scheme or parametric variation to concentration and activity in compartments as well as annual flux between compartments at their peak values, some calculations are made and investigated: For each case when changing the structure of compartments and GBIs as well as varying selected input Kd values, all of which seem very important among others, dose rate per nuclide release rate is separately calculated and analyzed. From the maximum dose rates (Bq/y), flux-to-dose conversion factors (Sv/Bq) for each nuclide were derived, which are to be used for converting the nuclide release rate appearing from the geosphere through various GBIs to dose rate (Sv/y) for individual in critical group. It has been also observed that compartment scheme, identification of possible exposure group and GBIs could be all highly sensitive to the final consequences in biosphere modeling.

  • PDF

LUMPED PARAMETER MODELS OF CARDIOVASCULAR CIRCULATION IN NORMAL AND ARRHYTHMIA CASES

  • Jung, Eun-Ok;Lee, Wan-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.885-897
    • /
    • 2006
  • A new mathematical model of pumping heart coupled to lumped compartments of blood circulation is presented. This lumped pulsatile cardiovascular model consists of eight compartments of the body that include pumping heart, the systemic circulation, and the pulmonary circulation. The governing equations for the pressure and volume in each vascular compartment are derived from the following equations: Ohm's law, conservation of volume, and the definition of compliances. The pumping heart is modeled by the time-dependent linear curves of compliances in the heart. We show that the numerical results in normal case are in agreement with corresponding data found in the literature. We extend the developed lumped model of circulation in normal case into a specific model for arrhythmia. These models provide valuable tools in examining and understanding cardiovascular diseases.

The Prediction of Weak Point about Vehicle Booming Noise Using the Acoustic Transfer Function (음향전달함수(ATF)를 이용한 부밍 소음 취약부 예측 연구)

  • Hwang, K.H.;Oh, H.J.;Choi, S.C.;Suh, J.K.;Hong, S.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.336-340
    • /
    • 2014
  • The noise and vibration have been evaluated by using the finite element model in the vehicle developing stage. The sound pressure of the vehicle compartment is predicted by the acoustic cavity model coupled with the body structure. In general, the structural model has been focused to study in the improvement of the noise. It is not easy to treat the structural model, instead the acoustic cavity model is relatively simple and aids in root cause analysis of vibro-acoustic issues. Therefore, the acoustic transfer function of the cavity is more efficient for finding out the main contribution parts of the vehicle booming noise. And examples about the run-up booming noise demonstrate the validity of the AFT analysis for improving the vibro-acoustic sensitivity.

  • PDF

Pharmacokinetic Modelling and Simulation of the Counter-transport in the Hepatic Transport of Organic Anions (음이온계 약물의 간수송과정에 있어서 대향수송의 약물동력학적 모델링 및 시뮬레이션)

  • Song, Suk-Gil;Lee, Jun-Seup;Chung, Youn-Bok
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.275-283
    • /
    • 2005
  • The purpose of the present study was to kinetically investigate the carrier-mediated uptake in the hepatic transport of organic anions, and to simulate the 'in vivo counter-transport' phenomena, using kinetic model which was developed in this study. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of 'counter-transport' phenomenon. To examine the inhibitory effects on the initial uptake of organic anions by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. Effects of bromophenol blue (BPB) or bromosulfophthalein (BSP) on the plasma disappearance curves of a 1-anilino-8-naphthalene sulfonate (ANS) were then kinetically analyzed based on a flow model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). Moreover, 'in vivo counter-transport' phenomena were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The 'in vivo counter-transport' phenomena in the hepatic transport of a organic anions were well demonstrated by incorporating the carrier-mediated process. However, the 'in vivo counter-transport' phenomena may be also explained by the enhancement of back diffusion due to the displacement of intracellular binding. In conclusion, one should be more cautious in interpreting data obtained from so-called 'in vivo counter-transport' experiments.

Diagnosis of Submerged Fixed Bioreactor using Radioisotope Tracer (방사성동위원소 추적자를 이용한 침적형 고정 미생물 반응조 진단)

  • Jung, Sunghee;Jin, Joonha;Lee, Myunjoo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1149-1158
    • /
    • 2000
  • A radioisotope tracer experiment was carried out in the submerged fixed bioreactor of a dye wastewater treatment facility to evaluate the flow behaviors in the 6 compartments of the reactor and to find any possible factors which may affect to the efficiency of the process. Approximately 20mCi of $^{131}I$ was injected into the system as a tracer and 8 radiation detectors were placed in the 6 compartments and at the inlet and the outlet of the system to measure the change of the tracer concentration with time. Using the Perfect Mixers in Series Model the measured data were analyzed to calculate the mean residence time and the characteristic parameters of the flow in the system. The mean residence time of the system was calculated as 17 hours which is 76% of the designed MRT(22.3hr). Among the 6 compartments, the first compartment doesn't show the characteristic of perfect mixer, whereas, the other 5 compartments are working as perfect mixers. The output response of the first compartment is fit well with the simulated output of a model which consists of a perfect mixer with an exchange volume. It indicates that a quarter of the tank volume is working as a dead volume or an exchange volume. From the measured residence time distributions in each compartment, the appropriate sampling times after the change of operational condition of the electron beam accelerator were evaluated.

  • PDF