• Title/Summary/Keyword: Comparison of efficiency

Search Result 3,213, Processing Time 0.029 seconds

An Intervention Study on Integration of Family Planning and Maternal/Infant Care Services in Rural Korea (가족계획과 모자보건 통합을 위한 조산원의 투입효과 분석 -서산지역의 개입연구 평가보고-)

  • Bang, Sook;Han, Seung-Hyun;Lee, Chung-Ja;Ahn, Moon-Young;Lee, In-Sook;Kim, Eun-Shil;Kim, Chong-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.20 no.1 s.21
    • /
    • pp.165-203
    • /
    • 1987
  • This project was a service-cum-research effort with a quasi-experimental study design to examine the health benefits of an integrated Family Planning (FP)/Maternal & Child health (MCH) Service approach that provides crucial factors missing in the present on-going programs. The specific objectives were: 1) To test the effectiveness of trained nurse/midwives (MW) assigned as change agents in the Health Sub-Center (HSC) to bring about the changes in the eight FP/MCH indicators, namely; (i)FP/MCH contacts between field workers and their clients (ii) the use of effective FP methods, (iii) the inter-birth interval and/or open interval, (iv) prenatal care by medically qualified personnel, (v) medically supervised deliveries, (vi) the rate of induced abortion, (vii) maternal and infant morbidity, and (viii) preinatal & infant mortality. 2) To measure the integrative linkage (contacts) between MW & HSC workers and between HSC and clients. 3) To examine the organizational or administrative factors influencing integrative linkage between health workers. Study design; The above objectives called for quasi-experimental design setting up a study and control area with and without a midwife. An active intervention program (FP/MCH minimum 'package' program) was conducted for a 2 year period from June 1982-July 1984 in Seosan County and 'before and after' surveys were conducted to measure the change. Service input; This study was undertaken by the Soonchunhyang University in collaboration with WHO. After a baseline survery in 1981, trained nurses/midwives were introduced into two health sub-centers in a rural setting (Seosan county) for a 2 year period from 1982 to 1984. A major service input was the establishment of midwifery services in the existing health delivery system with emphasis on nurse/midwife's role as the link between health workers (nurse aids) and village health workers, and the referral of risk patients to the private physician (OBGY specialist). An evaluation survey was made in August 1984 to assess the effectiveness of this alternative integrated approach in the study areas in comparison with the control area which had normal government services. Method of evaluation; a. In this study, the primary objective was first to examine to what extent the FP/MCH package program brought about changes in the pre-determined eight indicators (outcome and impact measures) and the following relationship was first analyzed; b. Nevertheless, this project did not automatically accept the assumption that if two or more activities were integrated, the results would automatically be better than a non-integrated or categorical program. There is a need to assess the 'integration process' itself within the package program. The process of integration was measured in terms of interactive linkages, or the quantity & quality of contacts between workers & clients and among workers. Intergrative linkages were hypothesized to be influenced by organizational factors at the HSC clinic level including HSC goals, sltrurture, authority, leadership style, resources, and personal characteristics of HSC staff. The extent or degree of integration, as measured by the intensity of integrative linkages, was in turn presumed to influence programme performance. Thus as indicated diagrammatically below, organizational factors constituted the independent variables, integration as the intervening variable and programme performance with respect to family planning and health services as the dependent variable: Concerning organizational factors, however, due to the limited number of HSCs (2 in the study area and 3 in the control area), they were studied by participatory observation of an anthropologist who was independent of the project. In this observation, we examined whether the assumed integration process actually occurred or not. If not, what were the constraints in producing an effective integration process. Summary of Findings; A) Program effects and impact 1. Effects on FP use: During this 2 year action period, FP acceptance increased from 58% in 1981 to 78% in 1984 in both the study and control areas. This increase in both areas was mainly due to the new family planning campaign driven by the Government for the same study period. Therefore, there was no increment of FP acceptance rate due to additional input of MW to the on-going FP program. But in the study area, quality aspects of FP were somewhat improved, having a better continuation rate of IUDs & pills and more use of effective Contraceptive methods in comparison with the control area. 2. Effects of use of MCH services: Between the study and control areas, however, there was a significant difference in maternal and child health care. For example, the coverage of prenatal care was increased from 53% for 1981 birth cohort to 75% for 1984 birth cohort in the study area. In the control area, the same increased from 41% (1981) to 65% (1984). It is noteworthy that almost two thirds of the recent birth cohort received prenatal care even in the control area, indicating that there is a growing demand of MCH care as the size of family norm becomes smaller 3. There has been a substantive increase in delivery care by medical professions in the study area, with an annual increase rate of 10% due to midwives input in the study areas. The project had about two times greater effect on postnatal care (68% vs. 33%) at delivery care(45.2% vs. 26.1%). 4. The study area had better reproductive efficiency (wanted pregancies with FP practice & healthy live births survived by one year old) than the control area, especially among women under 30 (14.1% vs. 9.6%). The proportion of women who preferred the 1st trimester for their first prenatal care rose significantly in the study area as compared to the control area (24% vs 13%). B) Effects on Interactive Linkage 1. This project made a contribution in making several useful steps in the direction of service integration, namely; i) The health workers have become familiar with procedures on how to work together with each other (especially with a midwife) in carrying out their work in FP/MCH and, ii) The health workers have gotten a feeling of the usefulness of family health records (statistical integration) in identifying targets in their own work and their usefulness in caring for family health. 2. On the other hand, because of a lack of required organizational factors, complete linkage was not obtained as the project intended. i) In regards to the government health worker's activities in terms of home visiting there was not much difference between the study & control areas though the MW did more home visiting than Government health workers. ii) In assessing the service performance of MW & health workers, the midwives balanced their workload between 40% FP, 40% MCH & 20% other activities (mainly immunization). However, $85{\sim}90%$ of the services provided by the health workers were other than FP/MCH, mainly for immunizations such as the encephalitis campaign. In the control area, a similar pattern was observed. Over 75% of their service was other than FP/MCH. Therefore, the pattern shows the health workers are a long way from becoming multipurpose workers even though the government is pushing in this direction. 3. Villagers were much more likely to visit the health sub-center clinic in the study area than in the control area (58% vs.31%) and for more combined care (45% vs.23%). C) Organization factors (admistrative integrative issues) 1. When MW (new workers with higher qualification) were introduced to HSC, it was noted that there were conflicts between the existing HSC workers (Nurse aids with less qualification than MW) and the MW for the beginning period of the project. The cause of the conflict was studied by an anthropologist and it was pointed out that these functional integration problems stemmed from the structural inadequacies of the health subcenter organization as indicated below; i) There is still no general consensus about the objectives and goals of the project between the project staff and the existing health workers. ii) There is no formal linkage between the responsibility of each member's job in the health sub-center. iii) There is still little chance for midwives to play a catalytic role or to establish communicative networks between workers in order to link various knowledge and skills to provide better FP/MCH services in the health sub-center. 2. Based on the above findings the project recommended to the County Chief (who has power to control the administrative staff and the technical staff in his county) the following ; i) In order to solve the conflicts between the individual roles and functions in performing health care activities, there must be goals agreed upon by both. ii) The health sub·center must function as an autonomous organization to undertake the integration health project. In order to do that, it is necessary to support administrative considerations, and to establish a communication system for supervision and to control of the health sub-centers. iii) The administrative organization, tentatively, must be organized to bind the health worker's midwive's and director's jobs by an organic relationship in order to achieve the integrative system under the leadership of health sub-center director. After submitting this observation report, there has been better understanding from frequent meetings & communication between HW/MW in FP/MCH work as the program developed. Lessons learned from the Seosan Project (on issues of FP/MCH integration in Korea); 1) A majority or about 80% of the couples are now practicing FP. As indicated by the study, there is a growing demand from clients for the health system to provide more MCH services than FP in order to maintain the achieved small size of family through FP practice. It is fortunate to see that the government is now formulating a MCH policy for the year 2,000 and revising MCH laws and regulations to emphasize more MCH care for achieving a small size family through family planning practice. 2) Goal consensus in FP/MCH shouBd be made among the health workers It administrators, especially to emphasize the need of care of 'wanted' child. But there is a long way to go to realize the 'real' integration of FP into MCH in Korea, unless there is a structural integration FP/MCH because a categorical FP is still first priority to reduce the rate of population growth for economic reasons but not yet for health/welfare reasons in practice. 3) There should be more financial allocation: (i) a midwife should be made available to help to promote the MCH program and coordinate services, (in) there should be a health sub·center director who can provide leadership training for managing the integrated program. There is a need for 'organizational support', if the decision of integration is made to obtain benefit from both FP & MCH. In other words, costs should be paid equally to both FP/MCH. The integration slogan itself, without the commitment of paying such costs, is powerless to advocate it. 4) Need of management training for middle level health personnel is more acute as the Government has already constructed 90 MCH centers attached to the County Health Center but without adequate manpower, facilities, and guidelines for integrating the work of both FP and MCH. 5) The local government still considers these MCH centers only as delivery centers to take care only of those visiting maternity cases. The MCH center should be a center for the managment of all pregnancies occurring in the community and the promotion of FP with a systematic and effective linkage of resources available in the county such as i.e. Village Health Worker, Community Health Practitioner, Health Sub-center Physicians & Health workers, Doctors and Midwives in MCH center, OBGY Specialists in clinics & hospitals as practiced by the Seosan project at primary health care level.

  • PDF

The Effect of Pressure Support on Respiratory Mechanics in CPAP and SIMV (CPAP 및 SIMV Mode하에서 Pressure Support 사용이 호흡역학에 미치는 효과)

  • Lim, Chae-Man;Jang, Jae-Won;Choi, Kang-Hyun;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong;Park, Pyung-Whan;Choi, Jong-Moo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.351-360
    • /
    • 1995
  • Background: Pressure support(PS) is becomimg a widely accepted method of mechanical ventilation either for total unloading or for partial unloading of respiratory muscle. The aim of the study was to find out if PS exert different effects on respiratory mechanics in synchronized intermittent mandatory ventilation(SIMV) and continuous positive airway pressure (CPAP) modes. Methods: 5, 10 and 15 cm $H_2O$ of PS were sequentially applied in 14 patients($69{\pm}12$ yrs, M:F=9:5) and respiratory rate (RR), tidal volume($V_T$), work of breathing(WOB), pressure time product(PTP), $P_{0.1}$, and $T_1/T_{TOT}$ were measured using the CP-100 pulmonary monitor(Bicore, USA) in SIMV and CPAP modes respectively. Results: 1) Common effects of PS on respiratory mechanics in both CPAP and SIMV modes As the level of PS was increased(0, 5, 10, 15 cm $H_2O$), $V_T$ was increased in CPAP mode($0.28{\pm}0.09$, $0.29{\pm}0.09$, $0.31{\pm}0.11$, $0.34{\pm}0.12\;L$, respectively, p=0.001), and also in SIMV mode($0.31{\pm}0.15$, $0.32{\pm}0.09$, $0.34{\pm}0.16$, $0.36{\pm}0.15\;L$, respectively, p=0.0215). WOB was decreased in CPAP mode($1.40{\pm}1.02$, $1.01{\pm}0.80$, $0.80{\pm}0.85$, $0.68{\pm}0.76$ joule/L, respectively, p=0.0001), and in SIMV mode($0.97{\pm}0.77$, $0.76{\pm}0.64$, $0.57{\pm}0.55$, $0.49{\pm}0.49$ joule/L, respectively, p=0.0001). PTP was also decreased in CPAP mode($300{\pm}216$, $217{\pm}165$, $179{\pm}187$, $122{\pm}114cm$ $H_2O{\cdot}sec/min$, respectively, p=0.0001), and in SIMV mode($218{\pm}181$, $178{\pm}157$, $130{\pm}147$, $108{\pm}129cm$ $H_2O{\cdot}sec/min$, respectively, p=0.0017). 2) Different effects of PS on respiratory mechanics in CP AP and SIMV modes By application of PS (0, 5, 10, 15 cm $H_2O$), RR was not changed in CPAP mode($27.9{\pm}6.7$, $30.0{\pm}6.6$, $26.1{\pm}9.1$, $27.5{\pm}5.7/min$, respectively, p=0.505), but it was decreased in SIMV mode ($27.4{\pm}5.1$, $27.8{\pm}6.5$, $27.6{\pm}6.2$, $25.1{\pm}5.4/min$, respectively, p=0.0001). $P_{0.1}$ was reduced in CPAP mode($6.2{\pm}3.5$, $4.8{\pm}2.8$, $4.8{\pm}3.8$, $3.9{\pm}2.5\;cm$ $H_2O$, respectively, p=0.0061), but not in SIMV mode($4.3{\pm}2.1$, $4.0{\pm}1.8$, $3.5{\pm}1.6$, $3.5{\pm}1.9\;cm$ $H_2O$, respectively, p=0.054). $T_1/T_{TOT}$ was decreased in CPAP mode($0.40{\pm}0.05$, $0.39{\pm}0.04$, $0.37{\pm}0.04$, $0.35{\pm}0.04$, respectively, p=0.0004), but not in SIMV mode($0.40{\pm}0.08$, $0.35{\pm}0.07$, $0.38{\pm}0.10$, $0.37{\pm}0.10$, respectively, p=0.287). 3) Comparison of respiratory mechanics between CPAP+PS and SIMV alone at same tidal volume. The tidal volume in CPAP+PS 10 cm $H_2O$ was comparable to that of SIMV alone. Under this condition, the RR($26.1{\pm}9.1$, $27.4{\pm}5.1/min$, respectively, p=0.516), WOB($0.80{\pm}0.85$, 0.97+0.77 joule/L, respectively, p=0.485), $P_{0.1}$($3.9{\pm}2.5$, $4.3{\pm}2.1\;cm$ $H_2O$, respectively, p=0.481) were not different between the two methods, but PTP($179{\pm}187$, $218{\pm}181 cmH_2O{\cdot}sec/min$, respectively, p=0.042) and $T_1/T_{TOT}$($0.37{\pm}0.04$, $0.40{\pm}0.08$, respectively, p=0.026) were significantly lower in CPAP+PS than in SIMV alone. Conclusion: PS up to 15 cm $H_2O$ increased tidal volume, decreased work of breathing and pressure time product in both SIMV and CPAP modes. PS decreased respiration rate in SIMV mode but not in CPAP mode, while it reduced central respiratory drive($P_{0.1}$) and shortened duty cycle ($T_1/T_{TOT}$) in CPAP mode but not in SIMV mode. By 10 em $H_2O$ of PS in CPAP mode, same tidal volume was obtained as in SIMV mode, and both methods were comparable in respect to RR, WOB, $P_{0.1}$, but CPAP+PS was superior in respect to the efficiency of the respiratory muscle work (PTP) and duty cycle($T_1/T_{TOT}$).

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF