Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.
The focus of this study is to analyze between South Korea and China in terms of diversity in Management Information Systems research. As a result, there is herding phenomenon regarding researches in both of the countries compared to other previous studies. There also seemed to be lack of in-depth study of basic theories and connection to related field of study considering the broad topics of management information, unlike other international journals that pursue diversity in control referencing various methodologies, analysis units and many citations. Therefore, both South Korea and China should stabilize theoretical base of MIS through securing independent field of MIS along with founding the fundamentals by searching in diversified fields, methodologies and analysis units with focused topics. The upshot here is that with respect to diversity in MIS from both countries, to alleviate herding phenomenon, enforcing accuracy of data collection and reducing convenience pursuit should be implemented. Also as criteria to select a topic, different kinds of consulting concepts and taking social issues into consideration that helps tool development and analysis power should be done. Through varied methodologies, tool development and analysis power should be assisted and analysis unit should be shifted to organization unit for Korea and team or individual for China only to augment the accessibility. As a limitation for the paper is that the data used in this analysis is secondary data. In addition, although time period used in both countries were the same, object of analysis had homogeneity in Korean case while Chinese one having heterogeneity from 19 different journals. For the future studies, multicultural comparison or time series analysis and their comparison in deeper approach with regard to object of analysis and methodologies can contribute to further MIS diversity.
Kim, Jong-Kil;Pak, Ji-Yeong;Wang, Ying;Park, Sung-Il;Yeo, Gi-Tae
Journal of Navigation and Port Research
/
v.35
no.4
/
pp.343-349
/
2011
The forecasting of container volume which is the basis of port logistics facilities expansion has a great influence on development of an port. Based on this importance, various previous studies have presented methodology on container volume forecasting. The results of many previous studies pointed out the limitations of future forecasting based on past container volume and emphasized that more various factors should be considered to compensate this. Taking notice of this point, this study forecasted future container volume by using ARIMA model, time series analysis and System Dynamics (SD) method, a dynamic analysis technique and performed the comparative review with the forecast of the Ministry of Land, Transport and Maritime affairs. Recently with rapid changes in economic and social environment, the non-linear change tendency for forecasting container traffic is presented as a new alternative to the country.
Kim, Jongsung;Kim, DongHyun;Wang, Wonjoon;Lee, Haneul;Lee, Myungjin;Kim, Hung Soo
Journal of Korea Water Resources Association
/
v.54
no.spc1
/
pp.1083-1093
/
2021
It is an essential to predict water usage for establishing an optimal supply operation plan and reducing power consumption. However, the water usage by consumer has a non-linear characteristics due to various factors such as user type, usage pattern, and weather condition. Therefore, in order to predict the water consumption, we proposed the methodology linking various techniques that can consider non-linear characteristics of water use and we called it as KWD framework. Say, K-means (K) cluster analysis was performed to classify similar patterns according to usage of each individual consumer; then Wavelet (W) transform was applied to derive main periodic pattern of the usage by removing noise components; also, Deep (D) learning algorithm was used for trying to do learning of non-linear characteristics of water usage. The performance of a proposed framework or model was analyzed by comparing with the ARMA model, which is a linear time series model. As a result, the proposed model showed the correlation of 92% and ARMA model showed about 39%. Therefore, we had known that the performance of the proposed model was better than a linear time series model and KWD framework could be used for other nonlinear time series which has similar pattern with water usage. Therefore, if the KWD framework is used, it will be possible to accurately predict water usage and establish an optimal supply plan every the various event.
Background: It is very difficult to distinguish between a radioactive contamination source and background radiation from natural radionuclides in the marine environment by means of online monitoring system. The objective of this study was to investigate a statistical process for triggering abnormal level of count rate data measured from our on-line seawater radioactivity monitoring. Materials and Methods: Count rate data sets in time series were collected from 9 monitoring posts. All of the count rate data were measured every 15 minutes from the region of interest (ROI) for $^{137}Cs$ ($E_{\gamma}=661.6keV$) on the gamma-ray energy spectrum. The Shewhart ($3{\sigma}$), CUSUM, and Bayesian S-R control chart methods were evaluated and the comparative analysis of determination methods for count rate data was carried out in terms of the false positive incidence rate. All statistical algorithms were developed using R Programming by the authors. Results and Discussion: The $3{\sigma}$, CUSUM, and S-R analyses resulted in the average false positive incidence rate of $0.164{\pm}0.047%$, $0.064{\pm}0.0367%$, and $0.030{\pm}0.018%$, respectively. The S-R method has a lower value than that of the $3{\sigma}$ and CUSUM method, because the Bayesian S-R method use the information to evaluate a posterior distribution, even though the CUSUM control chart accumulate information from recent data points. As the result of comparison between net count rate and gross count rate measured in time series all the year at a monitoring post using the $3{\sigma}$ control charts, the two methods resulted in the false positive incidence rate of 0.142% and 0.219%, respectively. Conclusion: Bayesian S-R and CUSUM control charts are better suited for on-line seawater radioactivity monitoring with an count rate data in time series than $3{\sigma}$ control chart. However, it requires a continuous increasing trend to differentiate between a false positive and actual radioactive contamination. For the determination of count rate, the net count method is better than the gross count method because of relatively a small variation in the data points.
Purpose - The recent growth of South Korean products in the international market is the benchmark for both developed as well as developing countries. According to the development index, the role of international trade is indeed crucial for the development of the national economy. However, the visualization of the international trade profile of the country is the prerequisite of governmental policy decision-makers and guidance for forecasting of foreign trade. Design/methodology - We have utilized data visualization techniques in order to visualize the import & export product space and trade partners of South Korea. Economic Complexity Index (ECI) and Revealed Comparative Advantage (RCA) were used to identify the Korean international trade diversification, whereas the time series approach is used to forecast the economy and foreign trade variables. Findings - Our results show that Chine, U.S, Vietnam, Hong Kong, and Japan are the leading trade partners of Korea. Overall, the ECI of South Korea is growing significantly as compared to China, Hong Kong, and other developed countries of the world. The expected values of total import and export volume of South Korea are approximately US$535.21 and US$ 781.23B, with the balance of trade US$ 254.02B in 2025. It was also observed from our analysis that imports & exports are equally substantial to the GDP of Korea and have a significant correlation with GDP, GDP per capita, and ECI. Originality/value - To maintain the growth rate of international trade and efficient competitor for the trade partners, we have visualized the South Korea trade profile, which provides the information of significant export and import products as well as main trade partners and forecasting.
Purpose Real estate usually takes charge of the highest proportion of physical properties which individual, organizations, and government hold and instability of real estate market affects the economic condition seriously for each economic subject. Consequently, practices for predicting the real estate market have attention for various reasons, such as financial investment, administrative convenience, and wealth management. Additionally, development of machine learning algorithms and computing hardware enhances the expectation for more precise and useful prediction models in real estate market. Design/methodology/approach In response to the demand, this paper aims to provide a framework for forecasting the real estate market with machine learning algorithms. The framework consists of demonstrating the prediction efficiency of each machine learning algorithm, interpreting the interior feature effects of prediction model with a state-of-art algorithm, LIME(Local Interpretable Model-agnostic Explanation), and comparing the results in different cities. Findings This research could not only enhance the academic base for information system and real estate fields, but also resolve information asymmetry on real estate market among economic subjects. This research revealed that macroeconomic indicators, real estate-related indicators, and Google Trends search indexes can predict real-estate prices quite well.
Asbestos has been actively used for various places. Since it was designated as the first grade carcinogen in the 1970s, strict regulations on using asbestos has been implemented globally. Considering long-term latent periods between asbestos exposure and environmental diseases, we analyze the time lag between asbestos consumption and the incidence of mesothelioma in Korea and estimate the long-run relationship. In addition, we conduct a comparative analysis on the effectiveness of asbestos regulations in the United Kingdom and the United States, which have accumulated long-term time-series observations. The latent period analysis indicates that the consumption of asbestos and the incidence of the disease are highly correlated in all three countries, being long-term lags of more than 30 years. Also, we find a long-run equilibrium relationship between asbestos consumption and the incidence of mesothelioma in the presence of long-term lags between the variables in all three countries. Furthermore, using a distributed lag model, asbestos consumption has statistically significant positive effects on mesothelioma with a long-term lag.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.28
no.2
/
pp.57-78
/
2017
SNS is a useful tool to quickly deliver information in an emergency given their speed and expandability. Especially, SNS in the event of a disaster or an accident can offer on-site, accurate and detailed updates about essential information such as the safety of victims and the development of the situation, served as a valuable complement to the conventional media. This study aims to perform a comparative analysis on how social media are currently used by emergency management authorities in South Korea and other countries. Based on the results, this study proposed more effective ways to exploit SNS and improve efficiency of disaster management. To accomplish the goals, this study collected tweet information from various sources including the FEMA of the U. S., the FDMA and the Central Disaster Council of Japan, and the MPSS of Korea. The collected tweet information was analyzed by feedback, time series, and information types. The feedback analysis aims to quantify the number of monthly user feedback in order to assess user satisfaction about the tweet information. The time series analysis identifies the number of tweet information, feedback index and keywords by country for certain duration, examining why certain messages showed high feedback indices and what kind of contents should be offered by the authorities. Finally, the analysis of information type reviews the type of information contained in the tweet information that drew users' attention to identify the information type in which the authorities should deliver information to users. Based on these analyses, this study proposed improvement methods to use Tweeter in MPSS.
This paper examines the impact of the institutional complementarity between welfare regimes and production regimes on income inequality. Using comparative welfare data by various sources for 14 OECD nations from 1980 to 1997, this paper attempts to answer two questions. First, is there a institutional complementary in regulatory process between distribution and production? Second, if it is correct, what kind of causal structure do we predict? Panel Corrected Standard Errors(PCSE) model, a data analysis method in pooled cross-sectional time-series, is employed to examine the interaction effects between the two variables: coordination in the sphere of distribution; coordination in the sphere of production The evidence suggest that there are powerful interaction effects between distributive coordination and production coordination and that the institutional complementary has effects on income inequality. First, the income inequality effect of coordination in the sphere of distribution becomes less positive(more negative) as coordination in the sphere of production increases. Second, the income inequality effect of coordination in the sphere of production becomes less positive(more negative) as coordination in the sphere of distribution increases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.