• 제목/요약/키워드: Compaction control

검색결과 166건 처리시간 0.026초

An Experimental Study on the Control Property of PlasticShrinkage Crack for CFRD Face Slab Concrere (CFRD 차부벽콘크리트의 수성수축균열 제어특성에 관한 실험적 연구)

  • 김완영;최세진;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.118-121
    • /
    • 2000
  • CFRD (Concrete Faced Rockfill Dam) face slab concrete has a much capability to occur crack due to drying shrinkage, hydration heat and bas compaction etc. Because of crack of concrete induce structural problem and decrease durability of concrete, it is need to reduce crack of concrete. This is an experimental study to analyze the Control Property of Plastic Shrinkage Crack for CFRD face slab concrete. For this purpose, it was investigated and analyzed the engineering properties of plain concrete and using admixtures (polypropylene fiber, fly-ash) according to test result As the result, it was found that crack width and area of concrete using admixtures less than of plain concrete.

  • PDF

Field Enhanced Rapid Thermal Process for Low Temperature Poly-Si TFTs Fabrications

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.665-667
    • /
    • 2005
  • VIATRON TECHNOLOGIES has developed FE-RTP system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The system employs sequential heat treatment methods using temperature control and rapid thermal processor modules. The temperature control modules provide exceptionally uniform heating and cooling of the glass substrates to within ${\pm}2^a\;C$. The rapid thermal process that combines heating with field induction accelerates the treatment rates. The new FE-RTP system can process $730{\times}920mm$ glass substrates as thin as 0.4 mm. The uniform nature of poly-Si films produced by FE-RTP resulted in AMOLED panels with no laser-Muras. Furthermore, FE-RTP system also showed superior performances in other heat treatment processes involved in poly-Si TFT fabrications, such as dopant activation, gate oxide densification, hydrogenation, and pre-compaction.

  • PDF

Effects of interface angles on properties of rock-cemented coal gangue-fly ash backfill bi-materials

  • Yin, Da W.;Chen, Shao J.;Sun, Xi Z.;Jiang, Ning
    • Geomechanics and Engineering
    • /
    • 제24권1호
    • /
    • pp.81-89
    • /
    • 2021
  • Uniaxial compression tests were conducted on sandstone-CGFB composite samples with different interface angles, and their strength, acoustic emission (AE), and failure characteristics were investigated. Three macro-failure patterns were identified: the splitting failure accompanied by local spalling failure in CGFB (Type-I), the mixed failure with small sliding failure along with the interface and Type-I failure (Type-II), and the sliding failure along with the interface (Type-III). With an increase of interface angle β measured horizontally, the macro-failure pattern changed from Type-I to Type-II, and then to Type-III, and the uniaxial compressive strength and elastic modulus generally decreased. Due to the small sliding failure along with the interface in the composite sample with β of 45°, AE events underwent fluctuations in peak values at the later post-peak failure stage. The composite samples with β of 60° occurred Type-III failure before the completion of initial compaction stage, and the post-peak stress-time curve initially exhibited a slow decrease, followed by a steep linear drop with peaks in AE events.

An Effect on the Properties of High Flowing Concrete by Materials Variations-Focused on Inchon LNG Receiving Terminal #213,214 Tanks- (사용재료의 품질변동이 고유동콘크리트의 특성에 미치는 영향-인천 LNG 인수기지 #213,214-TK를 중심으로-)

  • 권영호;김무한
    • Journal of the Korea Concrete Institute
    • /
    • 제12권2호
    • /
    • pp.99-107
    • /
    • 2000
  • This research investigates experimentally an effect on the properties of the high flowing concrete to be poured in the under-ground slurry wall of Inchon LNG receiving terminal(#213,214-TK) according to variations of concrete materials. Variables for sensitivity test were selected items as followings. 1) Concrete temperature (3cases), 2) Unit water (5cases), 3) Fineness modulus of fine aggregate (5cases), 4) Particle size of lime stone powder (3cases), 5) Replacement ratio of blast-furnace slag (4cases) and 6) Addition ratio of high range water reducing agent (5cases). And fresh conditions of the super flowing concrete should be satisfied with required range including slump flow(65$\pm$5cm), 50cm reaching time of flow(4~10sec), V-lot flowing time(10~ 20sec), U-box height(min. 300mm) and air content(4$\pm$1%). As results for sensitivity test, considered flow-ability, self-compaction and segregation resistance of the high flowing concrete, material variations and conditions of fresh concrete should be satisfied with the range as follwings. 1) Concrete temperature are 10~2$0^{\circ}C$(below 3$0^{\circ}C$), 2) Surface moisture of fine aggregate is within $\pm$ 0.6%, 3) Fineness modulus of fine aggregate is 2.6$\pm$0.2, 4)Replacement ratio of blast-furnace slag is 45~50% and 5) Addition ratio of high range water reducing agent is within 1%. Based on the specification for quality control, we successfully finished concrete pouring on the under-ground slurry wall having 75,000㎥(#213,214-TK) and accumulated real date in site.

A Case Study of PHC Pile Behavior Characteristics on Dynamic Compacted High Rock Embankment (고성토 암버력 동다짐 지반에 시공된 PHC 말뚝의 거동특성 사례연구)

  • Yu, Nam-Jae;Yun, Dong-Kyun;Bae, Kyung-Tae;Kim, Hyung-Suk;Lee, Dal-Ho;Park, Yong-Man
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.519-526
    • /
    • 2010
  • The construction site for $\bigcirc\bigcirc$ transformer substation was located at a mountain valley. In order to prepare the site, the valley was first filled with crushed rock debris up to 63m. Since the main concern of this project is to minimize differential settlement of the foundation of transformer facilities, dynamic compaction was performed every 7m followed by reinforcement with EMP(Ez-Mud Piling). The EMP is one of bored piling methods, in which a hole is bored by means of air percussion and maintain by injecting Ez-Mud. Then a PHC pile (Pretensioned spun High strength Concrete pile) is embedded and finalized with a hammer. In this study, bearing capacities and long term behavior of a pile installed by EMP were investigated. To achieve these objectives, a series of tests such as static and dynamic load tests were conducted. In addition, a construction quality control standard was proposed based on the test results.

  • PDF

Correction Factors for Modulus Calculation Equation used in Light Weight Deflectometer Considering Track Foundation (궤도노반 강성차이를 고려한 동평판재하시험(LWDT) 동탄성계수 산정공식 수정계수)

  • Choi, Chan Yong;Lee, Jin Wook;Lim, Yuijn;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • 제18권1호
    • /
    • pp.53-62
    • /
    • 2015
  • LWDT was developed for use as an alternative technique to measure the stiffness of trackbed soils. In this study, numerical and theoretical analyses of LWDT's acting mechanism were performed. The effectiveness of the adapted elastic formula used for calculation of the dynamic modulus, Evd, was investigated theoretically and also numerically by running ABAQUS analysis. The minimum thickness of the upper layer is proposed based on the analysis. Correction factors for the formula of elastic modulus are also proposed in this study. In the future, following field test results and laboratory mechanical tests such as the resonant column test, a guideline for the use of LWDT as a standard test protocol in track construction sites, as a measuring tool for the degree of compaction and/or stiffness and dynamic modulus, will be proposed based on this analysis.

Water Content and Dry Density Measurement of Soil Using Flat TDR System (Flat TDR 시스템을 이용한 흙의 함수비와 건조단위중량 측정)

  • Kim, Wanmin;Kim, Daehyeon;Seo, Hyeok
    • Journal of the Korean Geotechnical Society
    • /
    • 제33권11호
    • /
    • pp.5-19
    • /
    • 2017
  • This study has been conducted to improve the conventional compaction management method by measuring the water content and dry unit weight of soil using the Time Domain Reflectometry (TDR) method. In order to verify the measured value of the developed flat TDR system, laboratory tests were conducted on six soils. Also, based on laboratory experiments, field tests were conducted to evaluate the applicability of the developed flat TDR system. Also, a comparison experiment was conducted with the Purdue TDR system. In addition, FE analysis was done to confirm the influence range of the Flat probe. As a result, it was confirmed that the influence range was about 10 cm. As a result of laboratory experiment, the water content ratio showed an error of about 0.4% on the average, and in the case of dry unit weight, it showed an error of about 1.6%. For the field test, the water content ratio and unit weight showed an error of 0.8% and 2.5%, respectively. Through the experimental results, it was confirmed that the measured value of the Flat TDR system is more accurate than that of the conventional TDR system.

Effects of Ground Strength Increase using Polysaccharide Environmentally Friendly Soil Stabilizer (다당류 친환경 지반개량재를 이용한 지반강도 증대 효과)

  • Kim, Suntae;Do, Jongnam;Jo, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • 제12권11호
    • /
    • pp.13-21
    • /
    • 2011
  • To recover basic functions of river such as water control, irrigation, environment, culture, a national river improvement project, the four river restoration projects were currently planned and under construction in Korea. This project is designed to preserve cultural assets and ecosystem from flooding, for that reason, environmentally friendly materials of construction are strongly emphasized. In this study, the soil and cement admixtures are developed. And, the compaction test and the unconfined compressive strength test to evaluate applicability of probiotics as environmentally friendly materials are conducted the soil and cement admixtures. As a result, the probiotic culture was not active in completely dried specimen to obtain accurate mixing proportion. It indicates that the probiotics cannot influence on the development the soil and cement admixtures. A further research will focus on the effect of response between polysaccharide environmentally friendly soil stabilizer and natural specimen.

Influence of plugger penetration depth on the apical extrusion of root canal sealer in Continuous Wave of Condensation Technique (플러거 삽입깊이가 근관실러의 치근단 정출에 미치는 영향)

  • So Ho-Young;Lee Young-Mi;Kim Kwang-Keun;Kim Ki-Ok;Kim Young-Kyung;Kim Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • 제29권5호
    • /
    • pp.439-445
    • /
    • 2004
  • The purpose of this study was to evaluate the influence of plugger penetration depth on the apical extrusion of root canal sealer during root canal obturation with Continuous Wave of Condensation Technique. Root canals of forty extracted human teeth were divided into four groups and were prepared up to size 40 of 0.06 taper with ProFile. After drying. canals of three groups were filled with Continuous Wave of Condensation Technique with System $B^{TM}$ and different plugger penetration depths of 3. 5, and 7 mm from the apex. Canals of one group were filled with cold lateral compaction technique as a control. Canals were filled with non-standardized master gutta-percha cones and 0.02 mL of Sealapex. Apical extruded sealer was collected in a container and weighed. Data was analyzed with one-way ANOVA and Duncan's Multiple Range Test. 3 and 5 mm penetration depth groups in Continuous Wave of Condensation Technique showed significantly more extrusion of root canal sealer than 7 mm penetration depth group (p < 0.05). However, there was no significant difference between 7 mm depth group in Continuous Wave of Condensation Technique and cold lateral compaction group (p < 0.05). The result of this study demonstrates that deeper plugger penetration depth causes more extrusion of root canal sealer in root canal obturation by Continuous Wave of Condensation Technique. Therefore, special caution is needed when plugger penetration is deeper in the canal in Continuous Wave of Condensation Technique to minimize the amount of sealer extrusion beyond apex.

Control of Cell Morphology of Al Foams fabricated by P/M Method and Induction Heating (P/M법과 유도가열법을 이용한 A1 Foam 재료의 기공제어)

  • Youn S. W.;Lee S. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.289-292
    • /
    • 2001
  • Aluminium foams, having a closed cell structure, fabricated by applying the powder compact method and an induction heating were studied. The powdered A6061 mixed with the powdered titanium hydride as a foaming agent was hot pressed into a foamable precursor. The resulting precursor was foamed by induction heating up to desired temperature. The effects of the titanium hydride content ($0.3{\~}1.5 wt.\%$), pressing pressure of the foamable precursor material (50-150kN), the forming temperature ($610{\~}690^{\circ}C$) and heating rate during foaming on the expansion behavior of the foam were investigated.

  • PDF