• Title/Summary/Keyword: Compaction Meter Value (CMV) earthwork

Search Result 2, Processing Time 0.018 seconds

A Study for Deriving Target CMV (Compaction Meter Value) of Intelligent Compaction Earthwork Quality Control (토공사 지능형 다짐 품질관리를 위한 목표 CMV(Compaction Meter Value) 도출 방안에 관한 연구)

  • Choi, Changho;Jeong, Yeong-Hoon;Baek, Sung-Ha;Kim, Jin-Young;Kim, Namgyu;Cho, Jin-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.25-36
    • /
    • 2021
  • Recently, the intelligent compaction technology for quality control of earthworks has brought attention as a quality control standard for earthworks. In this study, intelligent compaction technology and earthwork quality control methods were investigated and earthwork quality control procedures using intelligent compaction technology were considered based on field tests. Through the field compaction test of the silty sand (SM) fill material, it was confirmed that CMV and bearing capcaity index from plate load tests increased as the number of compactions increased. Based on the field test data, the average CMV and quality control target CMV were derived. The target CMV (34.2) was calculated through the correlation with the bearing capacity index of the plate load test, and the target CMV (36.6) was calculated through the analysis of the CMV increase rate. In this paper, the on-site compaction quality management procedure and methodology using intelligent compaction technology were discussed, and an intelligent compaction quality management method was proposed to promote the applicability of the technology.

Fundamental Study on Earthwork Quality Control Based on Intelligent Compaction Technology (지능형 다짐기술을 통한 토공사 품질관리를 위한 기초 연구)

  • Baek, Sung-Ha;Kim, Jin-Young;Cho, Jin-Woo;Kim, Namgyu;Jeong, Yeong-Hoon;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.45-56
    • /
    • 2020
  • In this paper, intelligent compaction (IC) technology and the earthwork quality control specifications based on IC were analyzed, and the field study was conducted to investigate the relationship between the representative IC value CMV (Compaction Meter Value) and spot test results (plate bearing test and field density test). As the number of roller passes increased, both the CMV and spot test results increased. However, point-by-point comparison between CMV and spot test results yielded poor quality correlations; this is because the ununiform stiffness of the underlying layer and the moisture content of the lift layer affected the CMV and spot test results, respectively. Most international specifications related to IC requires knowledge of the IC values and their relationships with the soil properties obtained by the traditional spot tests. Therefore, for the successful implementation of intelligent compaction technology into earthwork construction practice, the number of roller passes as well as the lift thickness and the moisture content of the soil should be carefully considered.