• Title/Summary/Keyword: Compact routing

Search Result 6, Processing Time 0.016 seconds

Space-Stretch Tradeoff Optimization for Routing in Internet-Like Graphs

  • Tang, Mingdong;Zhang, Guoqiang;Liu, Jianxun
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.546-553
    • /
    • 2012
  • Compact routing intends to achieve good tradeoff between the routing path length and the memory overhead, and is recently considered as a main alternative to overcome the fundamental scaling problems of the Internet routing system. Plenty of studies have been conducted on compact routing, and quite a few universal compact routing schemes have been designed for arbitrary network topologies. However, it is generally believed that specialized compact routing schemes for peculiar network topologies can have better performance than universal ones. Studies on complex networks have uncovered that most real-world networks exhibit power-law degree distributions, i.e., a few nodes have very high degrees while many other nodes have low degrees. High-degree nodes play the crucial role of hubs in communication and inter-networking. Based on this fact, we propose two highest-degree landmark based compact routing schemes, namely HDLR and $HDLR^+$. Theoretical analysis on random power-law graphs shows that the two schemes can achieve better space-stretch trade-offs than previous compact routing schemes. Simulations conducted on random power-law graphs and real-world AS-level Internet graph validate the effectiveness of our schemes.

An Impact of Addressing Schemes on Routing Scalability

  • Ma, Huaiyuan;Helvik, Bjarne E.;Wittner, Otto J.
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.602-611
    • /
    • 2011
  • The inter-domain routing scalability issue is a major challenge facing the Internet. Recent wide deployments of multihoming and traffic engineering urge for solutions to this issue. So far, tunnel-based proposals and compact routing schemes have been suggested. An implicit assumption in the routing community is that structured address labels are crucial for routing scalability. This paper first systematically examines the properties of identifiers and address labels and their functional differences. It develops a simple Internet routing model and shows that a binary relation T defined on the address label set A determines the cardinality of the compact label set L. Furthermore, it is shown that routing schemes based on flat address labels are not scalable. This implies that routing scalability and routing stability are inherently related and must be considered together when a routing scheme is evaluated. Furthermore, a metric is defined to measure the efficiency of the address label coding. Simulations show that given a 3000-autonomous system (AS) topology, the required length of address labels in compact routing schemes is only 9.12 bits while the required length is 10.64 bits for the Internet protocol (IP) upper bound case. Simulations also show that the ${\alpha}$ values of the compact routing and IP routing schemes are 0.80 and 0.95, respectively, for a 3000-AS topology. This indicates that a compact routing scheme with necessary routing stability is desirable. It is also seen that using provider allocated IP addresses in multihomed stub ASs does not significantly reduce the global routing size of an IP routing system.

A Scalable Heuristic for Pickup-and-Delivery of Splittable Loads and Its Application to Military Cargo-Plane Routing

  • Park, Myoung-Ju;Lee, Moon-Gul
    • Management Science and Financial Engineering
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 2012
  • This paper is motivated by a military cargo-plane routing problem which is a pickup-and-delivery problem in which load splits and node revisits are allowed (PDPLS). Although this recent evolution of a VRP-model enhances the efficiency of routing, a solution method is more of a challenge since the node revisits entail closed walks in modeling vehicle routes. For such a case, even a compact IP-formulation is not available and an effective method had been lacking until Nowak et al. (2008b) proposed a heuristic based on a tabu search. Their method provides very reasonable solu-tions as demonstrated by the experiments not only in their paper (Nowak et al., 2008b) but also in ours. However, the computation time seems intensive especially for the class of problems with dynamic transportation requests, including the military cargo-plane routing problem. This paper proposes a more scalable algorithm hybridizing a tabu search for pricing subproblem paused as a single-vehicle routing problem, with a column generation approach based on Dantzig-Wolfe decomposition. As tested on a wide variety of instances, our algorithm produces, in average, a solution of an equiva-lent quality in 10~20% of the computation time of the previous method.

Bit-Map Based Hybrid Fast IP Lookup Technique (비트-맵 기반의 혼합형 고속 IP 검색 기법)

  • Oh Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.244-254
    • /
    • 2006
  • This paper presents an efficient hybrid technique to compact the trie indexing the huge forward table small enough to be stored into cache for speeding up IP lookup. It combines two techniques, an encoding scheme called bit-map and a controlled-prefix expanding scheme to replace slow memory search with few fast-memory accesses and computations. For compaction, the bit-map represents each index and child pointer with one bit respectively. For example, when one node denotes n bits, the bit-map gives a high compression rate by consumes $2^{n-1}$ bits for $2^n$ index and child link pointers branched out of the node. The controlled-prefix expanding scheme determines the number of address bits represented by all root node of each trie's level. At this time, controlled-prefix scheme use a dynamic programming technique to get a smallest trie memory size with given number of trie's level. This paper proposes standard that can choose suitable trie structure depending on memory size of system and the required IP lookup speed presenting optimal memory size and the lookup speed according to trie level number.

  • PDF

Evaluation Of LoRaWAN In A Highly Dense Environment With Design Of Common Automated Metering Platform (CAMP) Based On LoRaWAN Protocol

  • Paul, Timothy D;Rathinasabapathy, Vimalathithan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1540-1560
    • /
    • 2022
  • Latest technological innovation in the development of compact lower power radios has led to the explosion of Internet of Things. With Wi-Fi, Zigbee and other physical layer protocols offering short coverage area there was a need for a RF protocol that had a larger coverage area with low power consumption. LoRa offers Long Range with lower power consumption. LoRa offers point to point and point to multipoint connections. with Single hop communication in place the need for routing protocols are eliminated. LoRa Wide Area Network stack can accommodate thousands of nodes under a single LoRa gateway with a single hop communication between the end nodes and LoRaWAN gateway. This paper takes an experimental approach to analyze the basic physical layer parameters of LoRa and the practical coverage offered by a LoRaWAN under highly dense urban conditions with variable topography. The insights gained from the practical deployment of the LoRaWAN network, and the subsequent performance analysis is used to design a novel public utility monitoring platform. The second half of the papers is designing a robust platform to integrate both existing wired sensor water meters, current and future generation wireless water meters. The Common Automated Metering Platform is designed to integrate both wired sensors and wireless (LoRaWAN and Wi-Fi) supported water meters. This integrated platform reduces the number of nodes under each LoRaWAN gateway and thus improves the scalability of the network. This architecture is currently designed to accommodate one utility application but can be modified to integrate multi-utility applications.

A Design of Wireless Sensor Node Using Embedded System (임베디드 시스템을 활용한 무선 센서 노드설계)

  • Cha, Jin-Man;Lee, Young-Ra;Park, Yeon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.623-628
    • /
    • 2009
  • The emergence of compact and low-power wireless communication sensors and actuators in the technology supporting the ongoing miniaturization of processing and storage allows for entirely the new kinds of embedded systems. These systems are distributed and deployed in environments where they may have been designed into a particular control method, and are often very dynamic. Collection of devices can communicate to achieve a higher level of coordinated behavior. Wireless sensor nodes deposited in various places provide light, temperature, and activity measurements. Wireless sensor nodes attached to circuits or appliances sense the current or control the usage. Together they form a dynamic and multi-hop routing network connecting each node to more powerful networks and processing resources. Wireless sensor networks are a specific-application and therefore they have to involve both software and hardware. They also use protocols that relate to both applications and the wireless network. Wireless sensor networks are consumer devices supporting multimedia applications such as personal digital assistants, network computers, and mobile communication devices. Wireless sensor networks are becoming an important part of industrial and military applications. The characteristics of modem embedded systems are the capable of communicating adapting the different operating environments. In this paper, We designed and implemented sensor network system which shows through host PC sensing temperature and humidity data transmitted for wireless sensor nodes composed wireless temperature and humidity sensor and designs sensor nodes using embedded system with the intention of studying USN.