• Title/Summary/Keyword: Compact modeling

Search Result 165, Processing Time 0.031 seconds

Analysis and modeling of thermal resistance of multi fin/finger FinFETs (멀티 핀/핑거 FinFET 트랜지스터의 열 저항 해석과 모델링)

  • Jang, MoonYong;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.39-48
    • /
    • 2016
  • In this paper, we propose thermal resistance compact model of FinFET structure that has hexagon shaped source/drain. The heating effect and thermal properties were increased by reduced size of the device, and thermal resistance is an important factor to analyze the effect and the properties. The heat source and each contact that is moved heat out were set up in transistor, and domain is divided by the heat source and the four parts of contacts : source, drain, gate, substrate. Each contact thermal resistance model is subdivided as a easily interpretable structure by analyzing the temperature and heat flow of the TCAD simulation results. The domains are modeled based on an integration or conformal mapping method through the structure parameters according to its structure. First modeled by analyzing the thermal resistance to a single fin, and applying the change in the parameter of the channel increases to improve the accuracy of the thermal resistance model of the multi-fin/ finger. The proposed thermal resistance model was compared to the thermal resistance by analyzing results of the 3D Technology CAD simulations, and the proposed total thermal resistance model has an error of 3 % less in single and multi-finl. The proposed thermal resistance model can predict the thermal resistance due to the increase of the fin / finger, and the circuit characteristics can be improved by calculating the self-heating effect and thermal characterization.

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

The Mechanical Modeling and design of saw frame in band sawing machine (띠톱기계 톱대의 역학적 모델링 및 설계)

  • LUO, luPing;DING, zelin;DING, shengxia;JIANG, Ping;FAN, li;XIAO, leihua;PAN, bosong;An, Boyoung;No, Joonkkyu;Li, Wenqi;Han, Changsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.390-397
    • /
    • 2019
  • A mechanical model of band sawing saw frame was established according to an analysis of a commonly used saw-frame structure diagram to overcome the problems of low service life, substandard cutting precision and efficiency, and high manufacturing cost caused by the unreasonable design of saw frame. Taking a particular type of sawing machine as an example, stress cycle analysis of the saw blade was carried out according to the mechanical model of the saw frame, and the fatigue analysis model of the most dangerous cross-section point that was most prone to fatigue failure of the saw blade was then established. The fatigue analysis result was used as the basis for the improved design of the saw frame, and the improved detailed saw-frame design parameters were obtained. The results suggested that the saw frame system is much more compact and the saw blade force met the fatigue strength requirements through the improved design. In addition, the service life of the saw blade and the cutting precision were increased. The established mechanical model of the saw frame in this paper is used widely and has high practical application values.

Simulation of Land Use Change by Storylines of Shared Socio-Economic Reference Pathways (사회경제 경로 시나리오에 따른 토지이용 변화 시뮬레이션)

  • KIM, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.1-13
    • /
    • 2016
  • In an effort to establish adaptive measures for low carbon use and climate change, this study developed storylines for shared socio-economic reference pathways(SSP) and simulated change in land use for each storyline. First, cellular automata modeling was performed using past data, and a transition rule for the local characteristics of each planning area under study was derived by comparing with the results of the base year. Second, three storylines were formulated based on the hypothesized change in land use for the SSP. SSP1, the scenario for sustainability, assumed that the land was developed into a compact city, SSP2 assumed the development of a road through the middle of the land while maintaining the current situation, and SSP3 assumed unsustainable development into a fragmented world. Third, change in land use depending on planning area was predicted by integrating the SSP scenarios with cellular automata(CA) modeling. According to the results of analysis using the SSP scenarios, the urban area ratio increased slightly up to 2020 in SSP1 and up to 2030 in SSP2 and did not change any more subsequently, but it increased continuously until 2050 in SSP3 that assumed low level urban planning. These results on change in land use are expected to contribute towards making reasonable decisions and policies on climate change, and the outcomes of simulation derived from spatial downscaling, if applied to vulnerability assessment, will be useful to set the priority of policies on climate change adaptation.

A Fuel Cell Generation Modeling and Interconnected Signal Analysis using PSCAD/EMTDC (연료전지 발전시스템의 PSCAD/EMTDC 모델링 및 계통연계에 따른 전력신호 분석에 관한 연구)

  • Choi, Sang-Yule;Park, Jee-Woong;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.21-30
    • /
    • 2008
  • The fuel cell generation convert fuel source, and gas directly to electricity in an electro-chemical process. Unlike traditional and conventional turbine engines, the process of fuel cell generation do not burn the fuel and run pistons or shafts, and it has not revolutionary machine, so have fewer efficiency losses, low emissions and no noisy moving parts. A high power density allows fuel cells to be relatively compact source of electric power, beneficial in application with space constraints. In this system, the fuel cell itself is nearly small-sized by other components of the system such as the fuel reformer and power inverter. So, the fuel cell energy's stationary fuel cells produce reliable electrical power for commercial and industrial companies as well as utilities. In this paper, a fuel cell system has been modeled using PSCAD/EMTDC to analyze its electric signals and characteristics. Also the power quality of the fuel cell system has been evaluated and the problems which can be occurred during its operation have been studied by modeling it more detailed. Particularly, we have placed great importance on its power quality and signal characteristics when it is connected with a power grid.

Text Mining-Based Analysis of Hyundai Automobile Consumer Satisfaction and Dissatisfaction Factors in the Chinese Market: A Comparison with Other Brands (텍스트 마이닝을 이용한 현대 자동차 중국시장 소비자의 만족 및 불만족 요인 분석 연구: 다른 브랜드와의 비교)

  • Cui Ran;Inyong Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.539-549
    • /
    • 2024
  • This study employed text mining techniques like frequency analysis, word clouds, and LDA topic modeling to assess consumer satisfaction and dissatisfaction with Hyundai Motor Company in the Chinese market, compared to brands such as Toyota, Volkswagen, Buick, and Geely. Focusing on compact vehicles from these brands between 2021 and 2023, this study analyzed customer reviews. The results indicated Hyundai Avante's positive factors, including a long wheelbase. However, it also highlighted dissatisfaction aspects like Manipulate, engine performance, trunk space, chassis and suspension, safety features, quantity and brand of audio speakers, music membership service, separation band, screen reflection, CarLife, and map services. Addressing these issues could significantly enhance Hyundai's competitiveness in the Chinese market. Previous studies mainly focused on literature research and surveys, which only revealed consumer perceptions limited to the variables set by the researchers. This study, through text mining and comparing various car brands, aims to gain a deeper understanding of market trends and consumer preferences, providing useful information for marketing strategies of Hyundai and other brands in the Chinese market.

Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images (농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석)

  • Choi, Hyeon-Gyeong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1445-1462
    • /
    • 2022
  • Compact Advanced Satellite 500-4 (CAS500-4), which is scheduled to be launched in 2025, is a mid-resolution satellite with a 5 m resolution developed for wide-area agriculture and forest observation. To utilize satellite images, it is important to establish a precision sensor model and establish accurate geometric information. Previous research reported that a precision sensor model could be automatically established through the process of matching ground control point (GCP) chips and satellite images. Therefore, to improve the geometric accuracy of satellite images, it is necessary to improve the GCP chip matching performance. This paper proposes an improved GCP chip matching scheme for improved precision sensor modeling of mid-resolution satellite images. When using high-resolution GCP chips for matching against mid-resolution satellite images, there are two major issues: handling the resolution difference between GCP chips and satellite images and finding the optimal quantity of GCP chips. To solve these issues, this study compared and analyzed chip matching performances according to various satellite image upsampling factors and various number of chips. RapidEye images with a resolution of 5m were used as mid-resolution satellite images. GCP chips were prepared from aerial orthographic images with a resolution of 0.25 m and satellite orthogonal images with a resolution of 0.5 m. Accuracy analysis was performed using manually extracted reference points. Experiment results show that upsampling factor of two and three significantly improved sensor model accuracy. They also show that the accuracy was maintained with reduced number of GCP chips of around 100. The results of the study confirmed the possibility of applying high-resolution GCP chips for automated precision sensor modeling of mid-resolution satellite images with improved accuracy. It is expected that the results of this study can be used to establish a precise sensor model for CAS500-4.

An approach to capture travelers' choice behaviour in response to unexperienced transportation modes: A case study of Personal Rapid Transit (미경험 교통수단에 대한 이용자 선택행태 분석: Personal Rapid Transit 사례를 중심으로)

  • Yu, Jeong-Whon;Shin, Seung-Kwon;Choi, Jung-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1730-1738
    • /
    • 2011
  • Personal Rapid Transit (PRT) has emerged as a promising alternative transportation mode for transit-oriented sustainable communities by creating compact and walkable environments with competitive construction and operational costs. This study seeks to capture the changes in travel mode choice behavior in response to the introduction of PRT to travelers who have no previous experience of using it. A critical issue in modeling the PRT mode choice is how to capture travelers' perception and evaluation of the unexperienced travel mode. The data used come from questionnaire surveys, in which RP (Revealed Preference) and SP (Stated Preference) data were collected in relation to travel mode choices with and without PRT systems. The questionnaire was designed especially for mitigating the potential bias in favor of or against choosing PRT. In addition, an efficient approach was proposed to reduce the number of SP questions by avoiding the complex fractional factorial design which tends to make it difficult for respondents to keep their attention throughout the survey. The analysis results show that the proposed approach is able to realistically capture the effects of explanatory variables on the travel mode choice. Discrete choice models are developed to predict travelers' mode choices under different choice scenarios by varying PRT system specifications and operational characteristics. PRT patronages are projected for two different test sites using the developed PRT mode choice models.

  • PDF

Mechanical Reliability Evaluation on Solder Joint of CCB for Compact Advanced Satellite (Sherlock을 활용한 차세대 중형위성용 CCB 솔더 접합부의 기계적 신뢰성 평가)

  • Jeon, Young-Hyeon;Kim, Hyun-Soo;Lim, In-Ok;Kim, Youngsun;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.498-507
    • /
    • 2017
  • Electronic equipments comprised of high density components with various packaging types have been recently applied to a satellite. Therefore, to guarantee high reliability of electrical equipment, a design approach, which can reduce the development period and cost through an early diagnosis in potential risks of failure, should be established. In the previous research, the reliability assesment of the electronic equipments have based on Steinberg's fatigue failure theory. However, this theory was not enough for further investigation of life prediction and reliability of the electronic equipments comprised of various sizes and packaging types due to its theoretical limitations and analysis results sensitivity with regard to different modeling technic. In that case, if detailed finite element model is established, aforementioned problems can be readily solved. However, this approach might arise disadvantage of spending much time. In this paper, to establish strategy for high reliability design of electronic equipment, we performed mechanical reliability evaluation of CCB (Camera Controller Box) at qualification level based on the approach using Sherlock unlike design techniques applied to existing business.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF