• Title/Summary/Keyword: Compact evaporator

Search Result 18, Processing Time 0.02 seconds

Heat and mass transfer of helical absorber on household absorption chiller/heater (가정용 흡수식 냉난방기의 나선형 흡수기 열물질전달)

  • 권오경;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.570-578
    • /
    • 1999
  • An experimental study has been performed on heat and mass transfer in a falling film absorber with a strong lithium bromide solution in small-sized household absorption chiller/heater. Components were concentrically arranged in a cylindrical form. from the center, low temperature generator, absorber and evaporator. This arrangement of helical-typed heat exchangers allows to make the machine much more compact than conventional one. Experimental measurements were conducted with a helical absorber and the obtained data were compared with data in the literatures. The comparison revealed that the helical absorber tube provides a similar performance to existing tube bundle absorber in heat and mass transfer. As a result, the heat and mass transfer characteristics of helical type absorber showed the possibility of the reduction in size and weight of small] capacity absorption chiller/heater.

  • PDF

Performance Comparison of Flooded Seawater Cooling System with respect to Heat Sink Temperature (열원수 온도에 따른 만액식 해수냉각시스템의 성능 비교)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Kang, In-Ho;Kim, Chung-Lae;Seol, Sung-Hoon
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • A fleet consists of a main vessel, light vessels and carrying vessels for purse seine fishery. Carrying vessels contains fish storages to maintain freshness of catches. Currently most carrying vessels applies the cooling system using plain ice though accompanied various shortcomings. Seawater cooling system directly chilling seawater are now in use on carrying vessels in some developed countries to make up for these shortcomings and maximize advantages. This research deals with necessity of seawater cooling systems and establishes system criteria using Aspentech HYSYS program, prior to an experiment of compact-scale seawater cooling system which now in progress of manufacture. Performance comparison on condensation capacity, mass flow rate of working fluid, compressor power input, pump power input and others of the seawater cooling system applying a flooded evaporator is conducted with respect to the temperature of surface seawater varying according to seasons. The result presents that mass flow rate circulating the system is increased about 16.7% as the temperature of surface seawater increases. At the same condition, condensation capacity and compressor input work also increase about 9.8% and 91.2%, respectively.

Characteristics of Heat Transfer and Pressure Drop of R-22 Inside an Evaporating Tube with Small Diameter Helical Coil (극세관 헬리컬 코일 증발관내 R-22의 열전달 및 압력손실 특성)

  • Kim, Ju-Won;Kim, Jeong-Hun;Seo, Seok-Ki;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.699-708
    • /
    • 2000
  • To make compact evaporator, experiments that show characteristics of evaporating heat transfer and pressure drop in the helically coiled small diameter tube were taken in this research. The experiments were performed with HCFC-22 in the helically coiled small diameter tube; inner diameter=1.0(mm), tube length=2.0(m), and curvature diameter=31, 34, 46.2(mm). The experiments were also carried out with the following test conditions; saturation pressure=0.588(MPa), mass velocity=$150{\sim}500(kg/m^2s)$, and heat flux=$1{\sim}5(kW/m^2)$. The experiment results are that the empirical correlation to predict heat transfer coefficient for single phase flow in helically coiled small diameter tube was obtained. It was found that dry-out is occurred at low-quality region for evaporation heat transfer because of breaking of annular liquid film. The friction factor of single phase flow of helically coiled tube was agreed with Prandtl's correlation. Finally, It was proposed for correlation that can precisely predict the friction factor of two phase flow of helically coiled tube.

Numerical Study on the Evaporation Flow Phenomena of Natural Refrigerant CO2 through Small Diameter Tubes (천연냉매인 이산화탄소의 세관 유동시 발생하는 증발 유동 현상에 대한 수치해석 연구)

  • Choi, In-Su;Park, Byung-Duck
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.89-96
    • /
    • 2007
  • For the environment protection, carbon dioxide as a natural refrigerant has been studied to use in an automotive air conditioning system. Hence, a numerical model has been developed to describe the evaporation phenomena of carbon dioxide flowing through very small diameter tubes. The two dimensional low-Reynolds $k-{\varepsilon}$ model was used to predict the flow phenomena of carbon dioxide in the two phase during its evaporation. Furthermore, the results obtained from the model were compared with the experiments for the validation. The heat transfer coefficient is lower, as the tube inner diameter becomes smaller. However, the amount of heat absorbed by a unit mass of carbon dioxide is greater due to more surface area. Therefore, the small diameter tube has advantage in terms of compact design of evaporator. When the inlet condition of pressure and temperature is low, the heat transfer coefficient is slightly high at the same size of tube because of the thermal properties of carbon dioxide.

  • PDF

Characteristic of Heat and Mass Transfer on Helical Absorber Using New Working Fluid (신작동매체를 이용한 헬리컬 흡수기의 열물질전달 특성)

  • Kwon, Oh-Kyung;Lim, Jong-Keuk;Yoon, Jung-In
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.228-233
    • /
    • 2000
  • An experimental study has been performed regarding heat and mass transfer in a falling film absorber of domestic small-sized absorption chiller/heater. Components were concentrically arranged in cylindrical form : from the center, with a series of low temperature generator, absorber and evaporator. The arrangement of such helical-typed heat exchangers allows to make the system more compact as compared to conventional one. Experimental measurements were conducted with a helical absorber using $LiBr+LiI+LiNO_3+LiCl$ and LiBr solutions. As a result, the heat and mass flux performance of $LiBr+LiI+LiNO_3+LiCl$ solution shows the tendency of $2{\sim}5%$ increase. Therefore, $LiBr+LiI+LiNO_3+LiCl$ solution can be taken consideration into applying to small-sized absorption chiller/heater because of using without crystal through high concentration as 4wt% comparing with LiBr solution.

  • PDF

Flow Distributions in the Channel of Plate Heat Exchanger Applied in Vacuum Evaporating Distiller System

  • Jin, Zhen-Hua;Park, Gi-Tae;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.389-394
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present work, PHE is applied in the fresh water generator system. Fresh water generators or desalinators are installed in ship to convert seawater to fresh water using heat from engines. PHE is an important part of a condensing or evaporating system. Among many of factors which should be concentrated on, the heat transfer and pressure drop is most important parts during sizing and rating the performance of PHE. Flow maldistribution is common but it will significantly reduce the heat exchanger performance. In this paper provide a overview of PHE cover basic of theory and conduct a numerical approach for flow distribution in plate channel. An experimental study on the performance of fresh water generator system which developed by plate heat exchanger will presented in future research. Thus, extensive experiment and analysis is required to study the thermal and fluid flow characteristics of PHE.

  • PDF

Study on Characteristics of Heat Transfer and Flow in Plate Heat Exchanger (판형 열교환기의 열전달과 유동특성에 대한 연구)

  • Jin, Zhen-Hua;Lee, Kwang-Sung;Ji, Myoung-Kuk;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1476-1483
    • /
    • 2009
  • In present work, experiments conducted to investigate the heat transfer characteristics and relationship between operating parameters and production of fresh water as output of the system. Plate Heat Exchanger (PHE) applied in vacuum evaporator for product fresh water that system intended to efficiently use low grade heat. PHE have become popular in chemical, power, food and refrigeration industries due to the efficient heat transfer performance, extremely compact design and flexibility of extend or modify to suit changed duty. The heat transfer part contains corrugated plates with 60 degree of chevron angle which verified by many researchers and commonly apply. Fresh water can be produced from saline water under near vacuum pressure by operating ejector. Consequently, evaporating temperature stay around $51-57^{\circ}C$ so it is possible to use any low grade heat source or renewable source. The maximum fresh water produced by freshwater generator with plat heat exchanger applied in the study was designed as 1.0 Ton/day.

  • PDF

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF