• Title/Summary/Keyword: Compact conductor

Search Result 27, Processing Time 0.035 seconds

Insulation Test for the 22.9 kV Class HTS Power Transmission Cable

  • J.W. Cho;Kim, H.J.;K.C. Seong;H.M. Jang;Kim, D.W.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.48-51
    • /
    • 2003
  • HTS power transmission cable is expected to transport large electric power with a compact size. We are developing a 3-core, 22.9 kV, 50 MVA class HTS power cable, and each core consists of a conductor and shield wound with Bi-2223 tapes, electrical insulation with laminated polypropylene paper (LPP) impregnated with liquid nitrogen. This paper describes the design and experimental results of the model cable for the 22.9 kV, 50 MVA class HTS power transmission cable. The model cable was used the SUS tapes instead of HTS tapes because of testing the electrical characteristics only. The model cable was 1.3 m long and electrical insulation thickness was 4.5 mm. The model cable was evaluated the partial discharge (PD), AC and Impulse withstand voltage in liquid nitrogen. The AC and Impulse withstands voltage and PD inception stress was satisfied with the standard of Korea Electric Power Corporation (KEPCO) in the test results. The 3-core 22.9 kV, 50 MVA class HTS power cable has been designed and manufactured based on these experimental results.

Insulator application and prospect (가공송전선로 애자 적용실태와 향후 전망)

  • Kim, Woo-Kyum;Min, Byeong-Wook;Kim, Tai-Young;Wi, Hwa-Bog;Choi, Jin-Sung;Lee, Buk-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.327_328
    • /
    • 2009
  • The insulator being used for transmission line is to mount the charged conductor on the tower or other supports. The insulators are classified according to its material: porcelain, glass and polymer. Polymer insulators are also called as composite insulator or non ceramic insulator (NCI). Insulators are a major element of a power transmission system. Since a faulty insulator can lead to a wide spreading blackout, it must have sufficient mechanical and electrical strength. It must be durable, have high electrical insulation and be able to withstand a leakage current. It must also be able to withstand the toughest weather conditions. In Korea, porcelain insulators have been used widely. However, to make compact equipment and keep up with global trends, we have enhanced domestic production of polymer insulator and are encouraging its applications. Accordingly, this thesis will look at types of insulators, use and trends, and prospects of insulators application in the field.

  • PDF

Design of a Compact Coaxial Waveguide Feed Horn for Dual Band (이중 대역 소형 동축 도파관 급전 혼 설계)

  • Yun, Sohyeun;Uhm, Manseok;Yom, Inbok
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.109-113
    • /
    • 2015
  • This paper presents the study results on a dual band feed horn for the focused reflector. A coaxial waveguide structure is attractive to avoid blockage from the feeder. The inner conductor as a hollow waveguide is designed to excite TE11 of a circular waveguide for high frequency. For low frequency, the design of the outer coaxial waveguide that propagates coaxial TE11 and prevents fundamental TEM is presented. The horn size for generation of these modes results in the degradation of performance. The return loss is improved by a capacitive iris and an inductive iris The enhanced pattern symmetry by dual mode is presented. The horn design in this paper are verified through the test.

Cutting Efficiency and Mechanical Characteristics of Diamond Micro-blades Containing WS2 Lubricant (WS2 윤활제를 첨가한 마이크로 다이아몬드 블레이드의 절삭성능과 기계적 특성)

  • Kim, Song-Hee;Jang, Jae-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • $WS_2$ powder was added to the Cu/Sn bond metal of diamond micro-blades for machining of semi-conductor and IC chips to improve cutting efficiency. The effect of $WS_2$ additive on cutting efficiency was investigated and compared with the micro-blades with $MoS_2$ developed in previous research. Flexural strength, frictional coefficient, and wear resistance of blades decreased with $WS_2$ but wear depth increased. It was found that the blades including $WS_2$ consumed less momentary energy than the blades containing $MoS_2$ during dicing test. Micro-blades containing $WS_2$ exhibited lower flexural strength than the blades with $MoS_2$ resulting from higher amount of sintering defects relevant to the less effectiveness of $WS_2$ on fluidity. The effect of $WS_2$ and $MoS_2$ on fluidity during sintering was analyzed in terms of mismatching degree between the longitudinal direction of lubricant particles and the perpendicular direction to the compact loading. The blade with 8.1 vol.% of $WS_2$ showed the best cutting efficiency.

Calculation of DC resistance of strand-to-strand joints for KSTAR (KSTAR 용 소선-소선 접합부의 직류저항 계산)

  • Ho-Jin Lee;Hyun-Il Nam;Ki-Baik Kim;Gye-Won Hong
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.104-110
    • /
    • 2001
  • Since the strand-to-strand type joint far CICC (Cable-In-Conduit Conductor) is small in size and has low DC resistance, it is expected to be useful type fur a superconducting magnet system which had a compact structure like the KSTAR (Korea Superconducting Tokamak Advanced Research) coil system. The DC resistance is changed according to the distribution patterns of strands in cables connected together in the joint. A commercial code was used for the calculation of the DC resistance. With the decrease of outer diameter of the Joint, Which means the increase of strand volume fraction in the joint, the calculated DC resistance decrease rapidly and non-lineally. The variation of resistance depends mainly on the volume fraction of solder which has higher resistivity than copper. The resistance decrease inversely with the increase of the length of the joint. The resistance increase with increase of number of triplets in each stack contacted with that of another terminal cable. In case of the strand-to-strand joint that has 62mm of outer diameter, 52mm of inner diameter, 100mm of overlap length, and four triplets in each stack, the calculated DC resistance is less than 1 n-Ohm.

  • PDF

Flowering Control by Using Red Light of Chrysanthemum (적색광을 이용한 국화의 개화조절)

  • Hong, Seung-Chang;Kwon, Soon-Ik;Kim, Min-Kyeong;Chae, Mi-Jin;Jung, Goo-Bok;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.123-127
    • /
    • 2013
  • BACKGROUND: The incandescent bulb and compact fluorescent lamp are widely using as a light sources for daylength extension of chrysanthemum. But, these light sources consume a lot of electricity and have short longevity. A light-emitting diode (LED) is a semi conductor light source. LEDs have many advantages over incandescent light sources including lower energy consumption, longer lifetime. In this study, we investigated the intensity of red light to control flowering of chrysanthemum (Dendranthema grandiflorum cv. "Shinma") by using LEDs. METHODS AND RESULTS: The red (660 nm) and far-red (730 nm) light were irradiated subsequently to investigate photo-reversible flowering responses of chrysanthemum. The flowering of chrysanthemum was inhibited by night interruption with red light but subsequently irradiated far-red light induced the flowering of chrysanthemum. This photoreversibility, reversion of the inductive effect of a brief red light pulse by a subsequent far-red light pulse, is a property of photo responses regulated by the plant photoreceptor phytochrome B. Four different intensity of red light of 0.7, 1.4, 2.1, and $2.8{\mu}mol/m^2/s$ (PAR) were irradiated at growth room in order to determine the threshold for floral inhibition of chrysanthemum. Over $1.4{\mu}mol/m^2/s$ of the red lights irradiated chrysanthemums were not flowered. The plant length, fresh weight, number of leaves, and leaf area of chrysanthemum irradiated with red light were increased by 17%, 36%, 11%, and 48%, respectively, compared to those of compact fluorescent lamp. CONCLUSION(S): The red light and subsequential far-red light showed that the photoreversibility on flowering of chrysanthemum. The red light ($1.4{\mu}mol/m^2/s$ of red LEDs) and white light (50 Lux of compact fluorescent lamp) have the same effect on inhibition of flowering in chrysanthemum. Additionally, the red light increased the plant height and dry weight of chrysanthemum.

Evaluation and Fabrication of Composite Bipolar Plate to Develop a Light Weight Direct Methanol Fuel Cell Stack for Small-scale UAV Application (I) (무인항공기용 경량화 직접메탄올연료전지 스택 개발을 위한 복합소재 분리판 제작 및 성능 평가 (I))

  • Kang, Kyung-Mun;Park, Sung-Hyun;Kim, Jin-Soo;Ji, Hyun-Jin;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.134-142
    • /
    • 2012
  • A bipolar plate is a major component of a fuel cell stack, which occupies 50~60% of the total weight and over 50% of the total cost of a typical fuel cell stack. In this study, a composite bipolar plate is designed and fabricated to develop a compact and light-weight direct methanol fuel cell (DMFC) stack for a small-scale Unmanned Aerial Vehicle (UAV) application. The composite bipolar plates for DMFCs are prepared by a compression molding method using resole type phenol resin as a binder and natural graphite and carbon black as a conductor filler and tested in terms of electrical conductivity, mechanical strength and hydrogen permeability. The flexural strength of 63 MPa and the in-plane electrical conductivities of 191 S $cm^{-1}$ are achieved under the optimum bipolar plate composition of phenol : 18%; natural graphite : 82%; carbon black : 3%, indicating that the composite bipolar plates exhibit sufficient mechanical strength, electrical conductivity and hydrogen permeability to be applied in a DMFC stack. A DMFC with the composite bipolar plate is tested and shows a similar cell performance with a conventional DMFC with graphite-based bipolar plate.