• Title/Summary/Keyword: Compact Antenna

Search Result 328, Processing Time 0.021 seconds

Compact Rectenna System Design Using a Direct Impedance Matching Method (임피던스 직접 정합 방법에 의한 Rectenna 시스템 소형화 설계)

  • Choi, Taemin;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.286-291
    • /
    • 2013
  • In this paper, a compact rectenna system is designed using a circular sector antenna with harmonic-rejecting characteristics and a direct impedance matching method. The system is designed with bandpass filtering performed by the harmonic-rejection of the circular sector antenna and without impedance matching circuit for the diodes by the direct impedance matching technique. Therefore, while the rectifying circuit of the proposed system can be implemented without a bandpass filter and a impedance matching circuit, it is integrated on the back side of the antenna using precise fabrication techniques for coaxial feedings without degrading the system performances corresponding to the feeding points. From the experimental results, the optimized rectenna system has presented excellent performances of a conversion efficiency of more than 52 % and a conversion voltages of more than 1.5 V at 2.5 GHz.

Miniature Staircase-Shaped Wideband MIMO Antenna with Excellent Isolation, Compliant to the SAR Standard (SAR규격을 만족하는 우수한 격리도의 소형 계단구조 광대역 MIMO 안테나)

  • Kahng, Kyungseok;Yang, In-Kyu;Kahng, Sungtek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1413-1420
    • /
    • 2013
  • This paper proposes a novel compact MIMO antenna which has miniaturized radiators and their row correlation coefficient, working for the LTE mobile communication, and its SAR is observed. Each of the proposed radiators has a shape of staircase and the bandwidth is twice larger than the conventional PIFA as 600MHz(21%) in 2.5 GHz - 3.15 GHz. And the area of the radiators is $16.5mm{\times}9.7mm$ proper for a handheld device. Also, by adding a planar mushroom decoupling structure between the radiators, the isolation is improved. The design has been carried out using the commercial full-wave time-domain EM solver and the finalized MIMO antenna has the return loss less than -10 dB in the LTE band, the isolation better than 20 dB and the efficiency more than 90% with the gain of 4.3 dB. Regarding the SAR of the antenna, it is observed that the average SAR value of 1g is estimated as 1.37W/Kg, which is lower than the SAR standard.

Fabrication and measurement of a Weathercock-Shaped Microstrip patch Antenna with T-Slot for 5.25-GHz Band Wireless LAN (5.25GHz 무선 LAN을 위한 T-Slot Weathercock-Shaped 마이크로스트립 패치 안테나 설계 및 제작)

  • Choi Sun-Ho;Jeong Gyey-Teak;Lee Hwa-Choon;Kwak Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1183-1187
    • /
    • 2005
  • In this paper, a weathercock-shaped microstrip patch antenna for application in 5.25GHz band wireless LAN is designed and fabricated. To obtain sufficient bandwidth in VSWR<2, the T-slot is inserted on the patch, the coaxial probe source is used. The measured result of fabricated antenna obtained 350MHz or about $7.62\%$ bandwidth in VSWR<2 referenced to the center frequency, the gain of 5.25${\~}$6.70dBi. The experimental 3-dB beam width is shown to be broad across the pass band in azimuth and elevation at $80.32^{\circ}$ and $83.88^{\circ}$, in several.

Designs on CPW-FED aperture antenna for uwb applications (UWB용 CPW-FED APERTURE 안테나 설계)

  • Jo, Sung-Sik;Park, Chang-Hyun;Park, Jung-Ah;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.303-307
    • /
    • 2008
  • In this paper, a new co-planar waveguide ultra-wideband aperture is designed. The designed antenna consists of a rectangular aperture on a determined ground plane and a mushroom shaped stub. The mushroom-shaped stub, which is simple, convenient to analyze and optimise, has less parameter. This antenna has compact aperture size $21.1{\times}8.1mm^2$, designed on FR-4 substrate with dielectric constant of 4.3, thickness of l.5mm. CPW fed planar antenna has the advantages of wide-bandwidth, low-cost and easy interaction with the radio frequency front end circuitry.

  • PDF

Compact Active Integrated Antenna with Rectagular Ring Structure for UHF RFID Reader (UHF RFID Reader용 사각 환형 소형 능동 안테나)

  • Yun, Gi-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.315-322
    • /
    • 2007
  • In this paper, active integrated antenna with left hand circular polarization(LHCP) for a transmitter of UHF RFID reader has been described. A novel rectangular ring patch as a radiator of the active antenna is proposed for easier impedance matching, smaller patch size, and LHCP characteristics. An amplification circuit is placed in the opening area of the radiator and is combined with it to work as oscillating circuit around 915 MHz. From the test results, impedance bandwidth of 29 MHz, 3 dB axial ratio bandwidth of 20 MHz, 3 dB beamwidth of 85 degree, and effective radiation power of 8.8 dBm have been obtained.

A Novel Technique to Miniaturize Microstrip Antennas with a Locally Non-Homogeneous Substrate Configuration

  • Lee, Byung-Je;Kim, Jong-Heon;Lee, Jong-Chul;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1355-1362
    • /
    • 2000
  • Microstrip antennas are attractive for many applications because of their compact size, low profile, and light weight. Recently, the demand for the miniaturization of the personal communication equipment has been increasing along with the proliferation of personal communication systems. Thus, the development of small antenna has been highly demanded. In this paper, a new technique to reduce the overall dimension of a microstrip antenna with a locally non-homogeneous substrate configuration is proposed. The miniaturized microstrip antenna for a repeater system in a mobile communication cellular band(824~894 MHz) is designed with the proposed technique, and commercialized with low cost, light weight, and small size. Comparison between simulations, based on Agilent Technologies HFSS software, and measurements are provided. The proposed method will be more attractive for a light-weight, small-size, and low-cost microstrip array design. This paper also presents the bandwidth improvement technique for under-coupled microstrip patch antenna with a tuning stub.

  • PDF

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications (5 GHz 무선랜 응용을 위한 소형 광대역 MEMS 안테나)

  • Kim Ji-Hyuk;Kim Hyeon Cheol;Chun Kukjin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.81-87
    • /
    • 2006
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer substrates we used to realize small size and broadband characteristics. The microstrip patch is divided into 4 pieces and each patch is connected to each other using a metal microstrip line. The fabrication please process is simple and only one mask is needed. Two types of microtrip antennas are fabrication Type A is the microstrip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8{\times}12{\times}2mm^3$ and the experimental results show that the antenna type A and type B have the bandwidth of 420MHz at 5.3 GHz and 480MHz at 5.66 GHz, respectively

Multiple Antenna System for Next Generation Mobile Communication (차세대 이동 통신용 다중 안테나 시스템)

  • Han, Min-Seok;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2010
  • In this paper, a multiple antenna system for next generation mobile applications is proposed. The proposed MIMO antenna consists of two parallel folded monopole antennas with the length of 100 mm and spacing of 6 mm and a decoupling network which locates at the top side of a mobile handset. In order to improve the isolation characteristic at the LTE band 13, a decoupling network was added between the two antenna elements placed close to each other. The decoupling network, consisting of two transmission lines, a shunt reactive component and common ground line, is simple and compact. To obtain the wide bandwidth characteristic, an wide folded patch structure generating the strong coupling between feeding and shorting lines through the slit is used at the bottom side of a mobile handset. Also, the performance of a multiple antenna system composed of three antenna elements is analyzed.

A Novel Multiple Band Antenna Design Implementing Unbalanced Feed-Lines and Meandered Patch Options (비대칭 급전선로와 패치설계를 이용한 다중대역 안테나의 설계)

  • Jung, Jin-Woo;Roh, Hyoung-Hwan;Park, Jun-Seok;Cho, Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.427-431
    • /
    • 2007
  • Applications in present-day mobile communication systems particularly require miniaturized dimensions and low-profiles of antenna in order to meet the mobile units. Thus, size reductions and bandwidth enhancements are becoming crucial design considerations for practical applications of microstrip antennas. The motivation of further experiments have been stepped to follow those studies for achieving compact and broadband, even multiplied operation modes, which are greatly increased with much attentions recently. To obtain broadband, single-feed, circularly polarized characteristics of microstrip antennas, a design with feed-line ought to be a factor of two. Usually, diagonally balanced-line feeds with hybrid coupler are employed to attain circular polarizations. We firstly formulated DGS (Defected Ground Structures) based operation principles of the entire microstrip components and therefore were able to derive impedance variance of feed-lines. After verifying corresponding experimental results, we targeted the frequency bands of UHF RFID (Ultra High Frequency Radio Frequency IDentification) and approximately of 0.4-2.4GHz have exhibited remarkable two resonance amplitudes as a dual band antenna. Our secondary researches were aimed to design quad band microstrip antenna which represents four resonance characteristics within the identical frequency bands as well. Microstrip patch has been meandered to lengthen the electrical paths, and the other design criteria with respecting physical parameters including radiation patterns and impedance bandwidths measurements will be described for verification. Advisable applications of these antennas can be GSM850, GSM900, GPS (L1-1575 and L2-1227) and UMTS-2110 of cellular systems, which extremely desire multiband and minimum size.

  • PDF

Wideband Stacked Microstrip Antenna with Rectangular and Triangular Parasitic Patches for 860MHz Band (직사각형 및 삼각형 기생패치를 이용한 860MHz 대역 광대역 적층 마이크로스트립 안테나)

  • Ko, Jin-Hyun;Kim, Gun-Kyun;Rhee, Seung-Yeop;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.874-879
    • /
    • 2016
  • A wideband stacked patch antenna with parasitic elements, rectangular and triangle shaped patches, is proposed. Two different shaped parasitic elements are placed in the above of main rectangular microstrip patch antenna in order to achieve wide bandwidth for 860 MHz band. Coupling between the main patch and parasitic patches is realized by thick air gap. The gap and locations of parasitic patches are found to be the main factor of the wideband impedance matching. The proposed antenna is designed and fabricated on a ground plane with small size of $119mm{\times}109mm$ for application of compact transceivers. The fabricated antenna on an FR4 substrate shows that the minimum measured return loss is below -11.68dB at 824 MHz and an impedance band of 818~919 MHz(11.7%) at 10dB return loss level. The measured radiation patterns are similar to those of a conventional patch antenna with maximum gain of 2.11 dBi at 824 MHz.