• Title/Summary/Keyword: Compact 열교환기

Search Result 58, Processing Time 0.025 seconds

Analysis for Air-Side Convective Heat Transfer Characteristics in Compact Heat Exchangers (밀집형 열교환기 내 공기 측 대류열전달특성)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1443-1448
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchangers with continuous plate fins. Simulation results such as air flow and temperature distributions are presented, and heat transfer characteristics are compared for various inlet conditions. Results from various turbulence models are also compared for applicability. There is large difference between the local heat transfer coefficient distributions along the cylinder wall for circular tubes. Colburn j factors from the calculated results of circular and flat tubes in the heat exchangers are compared for various Reynolds number. The predicted results in this study can be applied to the optimal design of air conditioning system. with compact heat exchanger.

  • PDF

Convective Heat Transfer Correlations for the Compact Heat Exchanger with Circular Tubes and Flat Tubes-Plate Fins (원형관 및 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 상관관계식)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.291-299
    • /
    • 2010
  • Aspect-ratio-based numerical analysis is carried out to investigate the air-side convective heat transfer characteristics in compact heat exchangers with circular tubes and flat tubes-plate fins. The RNG $k-{\varepsilon}$ model is adopted for turbulence analysis. The numerical analysis is carried out for aspect ratios ranging from 3.06 to 5.44 and for Reynolds numbers ranging from 1,000 to 10,000. The calculated results indicate a correlation between the friction factor and Colburn j factor in the compact heat exchanger system for the range of aspect ratios under consideration. The results obtained for circular tubes and flat tubes-plate fins in this study can be utilized to realize the optimal design of an air conditioning system.

Computation of Compact Heat Exchanger Performance by the Heat Exchangelet Method : Effect of Tube-to-tube Conduction along the Fin (미소열교환기법에 의한 밀집형 열교환기의 성능 계산 : 핀을 통한 튜브간 전도의 영향)

  • 성시경;송태호;최영철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.494-501
    • /
    • 2000
  • Effectiveness of a 3-pass plate finned-tube heat exchanger is calculated using heat exchangelet method by changing the shape of fin and the arrangement of tubes. The alternative refrigerant R134a is taken in this study. Conduction between neighboring tubes along the fin is taken into account in addition to convection between the fin and the surrounding air. Governing equations are obtained by using energy balance in a small control volume containing a tube and fins. They are numerically solved following the tube. Effect of tube-to-tube conduction is investigated in single-phase and two-phase flows with various fin shapes and arrangements of tubes. Improvement of effectiveness by fin perforation is studied too. The results shows that perforating fins, increasing the number of tubes, and increasing the distance between neighboring tubes at the same fin area enhance the effectiveness.

  • PDF

A basic study on development of high-pressure compact steam unit applied hybrid heat exchanger (하이브리드 열교환기 적용 고압 컴팩트 스팀 유닛 개발에 관한 기초 연구)

  • Kim, Jeung-Hoon;Lim, Gye-Hun;Kim, Seung-Hyun;Jin, Chul-Kyu;Park, Jae-Hong;Cho, Sung-Youl;Hong, In-Ki;Lee, Sang-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In various industrial plants such as power generation plants, petrochemical plants, and unit factories, there is an increasing demand for a system that generates hot water using waste or surplus steam. Compact steam unit (CSU), which produces hot water by using steam, is a good solution considering energy reuse. In this study, as a basic study to develop a high-pressure CSU, heat transfer characteristics of a hybrid heat exchanger were investigated through experiments, in order to use the hybrid heat exchanger instead of a conventional plate heat exchanger as the core component of CSU. The experimental results are the followings. Heat balance between the hot side and cold side was satisfied within ${\pm}5%$. Overall heat transfer coefficient increased linearly as the Reynolds number increased and exceeded $5,524W/m^2K$ when the flow velocity was above 0.5 m/s. In addition, pressure drop also increased as the Reynolds number increased, and pressure drop per unit length was below 50 kPa/m.

Analysis of Convective Heat Transfer Characteristics for the Compact Heat Exchanger with Flat Tubes and Plate Fins Having a Non-symmetric Staggered Arrangements (비대칭 엇갈림 배열로 구성된 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 특성 해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.318-325
    • /
    • 2009
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in compact heat exchanger with flat tubes and continuous plate fins having a symmetric and non-symm etric staggered arrangements. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental results. In order to investigate the flow and heat transfer features by periodic boundary conditions, the three blocks were used. Predicted heat transfer coefficients between the three blocks are similar while there are relatively differences, compared with the experimental data. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Flat Tubes and Plate Fins According to the Aspect Ratio (종횡비에 따른 납작관-평판휜 형상의 밀집형 열교환기 내공기 측 대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.695-703
    • /
    • 2008
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with flat tubes and continuous plate fins according to the aspect ratio. RNG k-$\varepsilon$ model is applied for turbulence analysis. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous correlations for circular tubes. The numerical conditions are considered for the aspect ratios ranging from 3.06 to 5.44 and Reynolds number ranging from 1000 to 10,000. The results showed that heat transfer coefficients decreased with the increase of aspect ratio. From the calculated results a correlation of Colburn j factor for the considered aspect ratio in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Circular Tubes and Continuous Plate Fins (원형관-평판휜 형상의 밀집형 열교환기 내 공기 측대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.994-1001
    • /
    • 2007
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with circular tubes and continuous plate fins. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental correlations. Three models of standard and RNG $k-{\varepsilon}$, and Reynolds stress are applied for turbulence model applicability. Predicted heat transfer coefficient from the models of standard and RNG $k-{\varepsilon}$ are very close to those of the heat transfer correlations while there are relatively large difference, more than 17 percentage in the result from the Reynolds stress model. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested.

An experimental study on performance evaluation for development of compact steam unit applied with hybrid plate heat exchanger (하이브리드 판형 열교환기 적용 컴팩트 스팀 유닛 개발을 위한 성능 평가에 관한 실험적 연구)

  • Park, Jae-Hong;Cho, Sung-Youl;Lee, Jun-Seok;Lee, Sang-Rae;Kim, Seung-Hyun;Lim, Gye-Hun;Seo, Jung-Wan;Kim, Jeung-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.296-301
    • /
    • 2017
  • In various industrial places such as power generation plants, petrochemical and unit factories, the demands of systems that produce hot water by utilizing wasted or surplus steam have been increased. Compact steam unit(CSU) is a system that can meet these demands and produce hot water by using surplus or wasted steam, and it is also one of the good solutions in view of energy reuse. The new CSU with a capacity of 1,600 kW was developed with a hybrid plate heat exchanger of which thermal performances are better than a conventional plate heat exchanger, an improved temperature control valve, a user-friendly control system, and other components in this study. The purpose of this study was to obtain performance data of the new CSU through various experiments and utilize them for the CSU commercialization. The experimental results show that heat balances between the hot side(steam) and the cold side(cold water) were within ${\pm}0.77%$, and the fluctuations of outlet temperature of the secondary side which are one of the most important evaluation factors in the CSU were $(0{\sim}0.3)^{\circ}C$.

Numerical investigation of plate fin performance for a compact heat exchanger (밀집형 열교환기에 사용하는 평판핀 성능에 관한 수치적 연구)

  • 유재욱;송태호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.292-300
    • /
    • 1999
  • Fin conduction not only enhances heat transfer to the ambient air but also increases tube-to-tube conduction. The latter is known to deteriorate the heat exchanger performance. Heat conduction between neighboring tubes thorough the fin is numerically investigated for accurate performance analysis of plate finned-tube heat exchangers. Governing equations for arbitrary plate fin are solved and the temperature distribution is obtained using the principle of superposition. Analysis is made using finite element method by changing the shapes of fin, the arrangements of tubes and the fin parameter mD. It is found that tube-to-tube conduction is significant when mD is small or the distance between neighboring tubes is small.

  • PDF