• 제목/요약/키워드: Community based disaster management

검색결과 52건 처리시간 0.02초

벡터자기회귀(VAR) 모형을 이용한 지하수위와 하천수위의 추계학적 모의기법 개발 (A development of stochastic simulation model based on vector autoregressive model (VAR) for groundwater and river water stages)

  • 권윤정;원창희;최병한;권현한
    • 한국수자원학회논문집
    • /
    • 제55권12호
    • /
    • pp.1137-1147
    • /
    • 2022
  • 하천수위와 지하수위는 수문학적 순환과정에서 나타나는 수문학적 요소로 상호 연관성이 높으며 이러한 수문학적 요소에 대해 확률적 시뮬레이션을 독립적으로 수행하는 경우 상호 관련 정보손실과 같은 문제가 발생할 수 있다. 하천수위와 지하수위는 수문학적·농업적 가뭄을 평가하는 중요한 지표로 활용되지만 하천수위의 경우 건기 중에는 정확한 관측을 얻기가 매우 어려우며, 지하수위의 경우 데이터 기간이 상대적으로 짧아 이를 활용한 가뭄지수 사용이 제한적이다. 이와 관련하여 손실 없이 자료를 최대한 이용하기 위해 본 연구는 각 변수의 시간 의존성을 고려하는 동시에 상호 연관된 변수의 시간 의존성을 고려하는 벡터자기회 모형VAR)을 구성했다. 하천수위와 지하수위 사이의 자기 상관 및 상관관계를 확인하고, 정보 손실을 최소화하는 하천수위 및 지하수위를 예측할 수 있는지 여부를 결정하기 위해 벡터 자기 회귀 모델의 최적 순서 결정과 매개변수를 결정하였다. 또한, 두 변수 간의 상관관계를 반영하지 않는 자기회귀모형(AR)을 구축하고 모의에 대한 DIC와 상관계수를 VAR 모형과 비교하여 VAR 모형 더 적합함을 보이고 하천수위와 지하수위의 간의 상호관계성을 효과적으로 반영함을 확인하였다.

위성영상을 이용한 북한의 농업환경 분석 I. Landsat TM 영상을 이용한 북한의 지형과 토지피복분류 (Spatial Anaylsis of Agro-Environment of North Korea Using Remote Sensing I. Landcover Classification from Landsat TM imagery and Topography Analysis in North Korea)

  • 홍석영;임상규;이승호;이정철;김이현
    • 한국환경농학회지
    • /
    • 제27권2호
    • /
    • pp.120-132
    • /
    • 2008
  • 직접 조사가 힘든 비접근 지역인 북한 전역을 대상으로 DEM을 이용하여 표고 및 경사별 분포 현황을 분석하였고, Landsat TM 위성영상을 이용하여 논, 밭, 산림, 나지, 초지, 물, 간척지, 염전, 건물. 주거지, 기타10개의 분류 항목에 대한 토지피복도를 작성하였다. DEM을 이용한 지형분석 결과 개마고원이 위치한 량강도를 중심으로 동쪽 지역의 표고가 1,000 m 이상으로 높게 나타났고, 평안남도와 황해남도 지역이 낮게 나타났다. 산악지로 구분되는 심한 경사인 E 등급이 전체 면적 대비 38.2%로 가장 넓게 분포하는 것으로 나타났다. 편평한 A 경사는 주로 북한 서해안 지역에 넓게 분포하고 E 경사는 동북부 산악지형에서 높은 비율을 보이고 있어 북한의 전형적인 동고서저의 지형특성을 잘 반영하였다. 위성영상을 이용하여 분류한 북한의 토지피복 항목을 살펴보면 전체 면적 중 산림이 69.6%로 가장 넓게 분포하고 있고, 밭이 15.7%, 나지가 6.6%, 논이 4.2%, 하천과 저수지 등을 포함한 물이 1.6%, 초지가 1.1%, 도시와 주거지가 0.9%인 것으로 나타났다. 행정구역별 지표면 피복을 살펴보면 황해남도와 평안남도 등 서쪽에 위치한 해안가 저위평탄지에 주로 논이 넓게 분포하는 것으로 나타났다. 밭의 분포는 논과 같이 서쪽 지역에 많이 분포하는 경향이었으나 북동쪽에 위치한 함경도와 자강도 및 량강도에도 비교적 고르게 분포하는 것으로 나타났다. 경사등급별로 농경지의 분포를 살펴보면, $0{\sim}2%$인 A 경사에 약 80% 이상 논이 분포하고 있고, 반면 밭은 A, B, C, D, E 등급에 비교적 고르게 분포하고 있는 것으로 나타났다. 농업기후지대별 토지피복 현황을 살펴보면, 논과 밭은 북부 평야지대와 북부 서해안지대에 전체의 약 79%와 45%가 분포하였고 산림은 비교적 모든 농업기후지대별로 고르게 분포하였다. 위성영상을 이용한 원격탐사 기술은 접근이 힘든 지역에 대한 농업기반 및 농경지 정보를 주기적으로 파악할 수 있고, 넓은 지역에 대한 정보 수집이 가능한 장점이 있어, 3년$\sim$5년 주기로 영상분류를 통한 토지피복도를 작성하여 토지이용 및 분류에 대한 시간적 공간적인 변화를 분석한다면 농경지와 산림에 대한 이용 현황 자료를 제공할 수 있고 앞으로의 이용계획 수립에 효율적으로 사용될 수 있을 것으로 생각된다.