• Title/Summary/Keyword: Communication Failure Rate

Search Result 121, Processing Time 0.027 seconds

Consumers' Negative Responses to the Communication Failure of Chatbots in Online Fashion Shopping Malls (온라인 패션 쇼핑몰 챗봇의 커뮤니케이션 실패에 대한 소비자의 부정적 반응)

  • Seo, Min Jeong
    • Fashion & Textile Research Journal
    • /
    • v.24 no.2
    • /
    • pp.183-194
    • /
    • 2022
  • This study aims to understand the consumers' negative responses to communication failure of chatbots caused by their imperfections. Specifically, this study examines 1) the relationship among chatbot's communication failure, dissatisfaction, negative behavior (complaint, negative word-of-mouth (nWOM), and inertia); 2) the moderating effect of technostress on the relationship between chatbot's communication failure and dissatisfaction; 3) the differences in the negative responses between the generation MZ and the previous generations. Data were collected via an online survey. First, the participants interacted with the chatbot developed for this survey, to experience the chatbot's communication failure. Thereafter, they responded to a questionnaire. PLS-SEM was conducted using the R software environment to test the hypotheses. This study empirically identified that chatbot's communication failure positively affected dissatisfaction. In addition, the customers who were more dissatisfied with the chatbot's communication failures were more likely to complain than engage in nWOM. Compared to the generation MZ, chatbot's communication failure caused a higher level of dissatisfaction in previous generations. The results suggest that online shopping malls should carefully introduce an improved chatbot service after minimizing its communication failure rate. The chatbot developers of online shopping malls targeting middle-aged and elderly consumers should strive to develop and implement strategies to further alleviate consumers' dissatisfaction in the situation of chatbot's communication failure.

Analysis of the effect on Road Network with Communication Failure Rate of C-ITS Information System for Rear-end Collision Avoidance (C-ITS 차량 추돌방지 지원 시스템의 통신 부하를 고려한 도로네트워크 영향 분석)

  • Kim, Jun-Yong;Kim, Jin-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.71-82
    • /
    • 2016
  • Information System for rear-end collision avoidance is a unit service of C-ITS pilot project. Road environment that the number of vehicles at the same driving high-speed has a possibility that the communication delay or failure caused by heavy load of vehicle to vehicle communication. In this study, effects of the road network about a communication failure rate of information system for rear-end collision avoidance was analyzed quantitatively with micro traffic simulation. The simulation was carried out in situation that crash of two vehicles are occurred at merging area with speed limit 80km/h and information of collision is prvoided to the rear vehicle. From simulation results, it can confirm the trend of the increasing 14% of potential conflict according to 10% increasing of the communication failure rate. C-ITS service has a goal of increasing safety. The coommunication failure rate increases due to heavy load of vehicle causes a fatal result in road safety administrator position. For the success of C-ITS project, a communication system developers side should perform the effort to reduce the communication failure rate.

Simulation and Evaluation of Redistribution Algorithms In Fault-Tolerant Distributed System (결함허용 분산시스템의 재분배 알고리즘의 시뮬레이션과 평가)

  • 최병갑;이천희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.1-10
    • /
    • 1994
  • In this paper load redistribution algorithm to allow fault-tolerance by redistributing the workload of n failure nodes to the remaining good nodes in distributed systems are investigated. To evaluate the efficiency of the algorithms a simulation model of algorithms is developed using SLAM II simulation language. The job arrival rate service rate failure and repair rate of nodes and communication delay time due to load migraion are used as parameters. The result of the simulation shows that the job arrival rate failure and repair rate of nodes do not affected on the relative efficiency of algorithms. If the communication delay time is greater than average job processing time algorithm B is better. Otherwise algorithm C is superior to the others.

  • PDF

Analysis of Criteria for Selecting Load Redistribution Algorithm for Fault-Tolerant Distributed System (분산 시스템의 결함시 재분배 알고리즘의 선정기준을 위한 특성 분석)

  • 최병갑
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.89-98
    • /
    • 1994
  • In this paper, a criteria for selecting an appropriate load redistribution algorithm is devised so that a fault-tolerance distributed system can operte at its optimal efficience. To present the guideline for selecting redistributing algorithms, simulation models of fault-tolerant system including redistribution algorithms are developed using SLAM II. The job arrival rate, service rate, failure and repair rate of nodes, and communication delay time due to load migration are used as parameters of simulation. The result of simulation shows that the job arrival rate and the failure rate of nodes are not deciding factors in affecting the relative efficiency of algorithms. Algorithm B shows relatively a consistent performance under various environments, although its performance is between those of other algorithms. If the communication delay time is longer than average job processing time, the performance of algorithm B is better than others. If the repair rate is relatively small or communication delay time is longer than service time, algorithm A leads to good performance. But in opposite environments, algorithm C is superior to other algorithms.

  • PDF

ZEUS: Handover algorithm for 5G to achieve zero handover failure

  • Park, Hyun-Seo;Lee, Yuro;Kim, Tae-Joong;Kim, Byung-Chul;Lee, Jae-Yong
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.361-378
    • /
    • 2022
  • In 5G, the required target for interruption time during a handover (HO) is 0 ms. However, when a handover failure (HOF) occurs, the interruption time increases significantly to more than hundreds of milliseconds. Therefore, to fulfill the requirement in as many scenarios as possible, we need to minimize HOF rate as close to zero as possible. 3GPP has recently introduced conditional HO (CHO) to improve mobility robustness. In this study, we propose "ZEro handover failure with Unforced and automatic time-to-execute Scaling" (ZEUS) algorithm to optimize HO parameters easily in the CHO. Analysis and simulation results demonstrate that ZEUS can achieve a zero HOF rate without increasing the ping-pong rate. These two metrics are typically used to assess an HO algorithm because there is a tradeoff between them. With the introduction of the CHO, which solves the tradeoff, only these two metrics are insufficient anymore. Therefore, to evaluate the optimality of an HO algorithm, we define a new integrated HO performance metric, mobility-aware average effective spectral efficiency (MASE). The simulation results show that ZEUS provides higher MASE than LTE and other CHO variants.

Study on the Quantification of Failure Rate for Safety-critical Fault-tolerant USN System (안전필수 결함허용 USN시스템의 고장률정량화에 관한 연구)

  • Shin, Duc-Ko;Shin, Kyung-Ho;Jo, Hyun-Jeong;Song, Yong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1414-1419
    • /
    • 2011
  • In this paper we study the modeling to quantitatively assess the failure rate of USN system designed for fault-tolerant architecture, aiming at applying the world's best domestic USN technology to safety-critical railways. In order to apply the USN system to the safety-critical field like a train control sector that the failures of controllers may cause severe railway accidents such as train collision and derailment, the quantitative reliability and safety evaluation recommended in IEC 62278 must be preceded. We also develop the evaluation model for overall system failure rate for the distributed network structure, which is the characteristics of USN system. Especially, we allocate reliability targets to component units, and present an availability evaluation plan through the plan on the quantitative achievement of failure rate for sensor nodes, gateways, radio-communication network and servers, along with the failure rate model of the overall system considering network operational features.

  • PDF

Determination of Deterioration and Damage of Porcelain Insulators in Power Transmission Line Through Mechanical Analysis (기계적 분석을 통한 송전용 자기 애자의 열화 판단 및 파손 부위에 대한 연구)

  • Son, Ju-Am;Choi, In-Hyuk;Koo, Ja-Bin;Kim, Taeyong;Jeon, Seongho;Lee, Youn-Jung;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.50-55
    • /
    • 2020
  • Porcelain insulators have been used for a long time in 154 kV power transmission lines. They are likely to be exposed to sudden failure because of product deterioration. This study was conducted to evaluate the quality of porcelain insulators. After stresses were applied, the damaged regions of aged insulators were investigated in terms of chemical composition, material structure, and other properties. For porcelain insulators that were in service for a long time, the mechanical failure load was 126 kN, whereas the average mechanical failure load was 167.3 kN for new products. It was also determined that corrosion occurred at the metal pin part due to the penetration of moisture into the gap between the pin and the ceramic. Statistical analyses of failure were performed to identify the portion of the insulators that were broken. Cristobalite porcelain insulators fabricated without alumina additives had a high failure rate of 54% for the porcelain component. In the case of the addition of Alumina (Al2O3) to the porcelain insulators to improve the strength of the ceramic component, a more frequent damage rate of the cap and pin of 73.3% and 27%, respectively, was observed. This study reports on the material component of SiO2 and the percentage of alumina added, with respect to the mechanical properties of porcelain insulators.

Communication Network Architectures for Southwest Offshore Wind Farm (한국 서남 해상 풍력발전단지 통신망 연구)

  • Ahmed, Mohamed A.;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.88-97
    • /
    • 2017
  • With the increasing of the penetration rate of large-scale wind farms, a reliable, highly available and cost-effective communication network is needed. As the failure of a WF communication network will significantly impact the control and real-time monitoring of wind turbines, network reliability should be considered into the WF design process. This paper analyzes the network reliability of different WF configurations for the Southwest Offshore project that is located in Korea. The WF consists of 20 WTs with a total capacity of 60 MW. In this paper, the performance is compared according to a variety of indices such as network unavailability, mean downtime and network cost. To increase the network reliability, partial protection and full protection were investigated as strategies that can overcome the impact of a single point of failure. Furthermore, the reliability performances of different network architectures are analyzed, evaluated and compared.

Analysis of Several Digital Network Technologies for Hard Real-time Communications in Nuclear Plant

  • Song, Ki-Sang;No, Hee-Cheon;Kim, Dong-Hun;Koo, In-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.226-235
    • /
    • 1999
  • Applying digital network technology for advanced nuclear plant requires deterministic communication for tight safety requirements, timely and reliable data delivery for operation-critical and mission-critical characteristics of nuclear plant. Communication protocols, such as IEEE 802/4 Token Bus, IEEE 802/5 Token Ring, FDDI, and ARCnet, which have deterministic communication capability are partially applied to several nuclear power plants. Although digital communication technologies have many advantages, it is necessary to consider the noise immunity from electromagnetic interference (EMI), electrical interference, impulse noise, and heat noise before selecting specific digital network technology for nuclear plant. In this paper, we consider the token frame loss and data frame loss rate due to the link error event, frame size, and link data rate in different protocols, and evaluate the possibility of failure to meet the hard real-time requirement in nuclear plant.

  • PDF