• 제목/요약/키워드: Common-rail fuel injection

검색결과 211건 처리시간 0.02초

소형디젤기관의 연료분사조건에 따른 연소 및 미세입자 배출 특성에 관한 연구 (The Effect of Fuel Injection Strategy on Combustion and Nano-particle Emissions in a Small Diesel Engine)

  • 강석호;이성욱;엄동섭
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.98-106
    • /
    • 2014
  • Emission standards for passenger diesel engines are becoming more and more stringent. Especially, Europe started the regulation of nano-particles from 2011 with EURO 5b. The objective of this study is to investigate the effect of fuel injection strategy on combustion and nano-particle emission in a small diesel engine. In this study, we conducted combustion analysis and measured both the weight of PM and number of nano-particels. At first, the optimum injection timing was determined with fixed engine operating conditions, such as engine speed, load, and fuel injection quantity. After that, the injection timing was controlled, and the effect of pilot injection was investigated. The number of nano-particles increased as engine load decreases, and it increased up to 10 times depending on the change of injection timing. The weight of PM emissions was increased at low load, and the PM emissions increased with increasing the number of pilot injections.

디젤분무의 분열과정에 대한 수치해석 연구 (Numerical Study of Breakup Process of Diesel Spray)

  • 염정국;정우성
    • 대한기계학회논문집A
    • /
    • 제37권12호
    • /
    • pp.1489-1495
    • /
    • 2013
  • 유체의 고압유동은 여러 산업현장에 활용되고, 특히 그 중 내연기관의 연료분사 인젝터가 대표적이며 디젤엔진의 커먼레일 시스템의 경우 1000bar 이상의 압력이 사용된다. 이와 같이 고속으로 분출되는 유체유동의 경우, 노즐을 통해 분사되는 고속의 유체는 주위기체와의 상호작용으로 분열과정을 거치게 된다. 이 분열과정은 연소실 혼합기형성기과정에 영향을 주게 되며, 그 결과 엔진의 연소상태에 까지 영향을 미치게 된다. 따라서 연료분무의 분열과정에 대한 해석은 중요하며, 본 연구에서는 연료분무의 분열을 위한 수치해석 서브모델로 Reitz&Diwakar 및 CAB(Cascade atomization and breakup)모델을 사용하였다. 본 연구의 목적은 분사된 분무의 분열과정의 정확한 해석이며, 분사연료의 분열발생 형태의 빈도 등을 조사하였다. 결과로서 본 연구는 상용 CFD 프로그램(CFX)을 이용하여 디젤분무의 분열과정해석을 위한 적합한 분열모델을 제안한다.

DME를 연료로 하는 커먼레일 디젤 엔진의 연소와 배기 특성에 미치는 분사압력과 EGR의 영향 (Effects of the EGR and Injection Pressure on the Combustion and Emission Characteristics of DME Commonrail Diesel Engine)

  • 정재우;강정호;이성만;김현철;강우
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.84-91
    • /
    • 2006
  • In this study, the effect of EGR and fuel injection pressure on the characteristics of combustion and emission performance of the common-rail diesel engine is investigated using DME fuel as a smoke-free alternative fuel. Because the heating value and density of DME fuel are lower than those of diesel fuel, the injection duration of the DME engine is relatively longer than the injection duration of the diesel engine with the same injection pressure. However, the higher injection pressure can shorten the injection duration for the DME engine. Although the smoke level of the DME engine is much lower than that of the diesel engine, the NOx is at a level similar to that of the diesel engine. As a proposed solution for this, the EGR technique is empirically applied to the DME engine. In the experiments, the injection pressure was changed from 200bar to 400bar, and the EGR rate was limited under 40%. With the same injection timing and fuel amount, the experiment results indicated that the increase of injection pressure led to the increase of IMEP while decreasing HC and CO emissions. However, the NOx emission tends to increase as the injection pressure becomes higher. On the other hand, as the EGR rate was increased, NOx emission and A/F were reduced while the HC and CO emissions were increased. Because HC and CO emissions have the critical A/F point where the emissions of HC and CO are rapidly increased, it is proposed that the EGR rate must be limited under the critical EGR rate.

작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향 (Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector)

  • 조인수;이진욱
    • 한국분무공학회지
    • /
    • 제24권2호
    • /
    • pp.66-72
    • /
    • 2019
  • Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

바이오디젤 혼합연료를 적용한 커먼레일 디젤엔진에서 파일럿 분사에 따른 연소 및 배기 특성 (Effect of Pilot Injection on Combustion and Exhaust Emissions Characteristics in a Biodiesel Fueled Diesel Engine)

  • 정규수;이동곤;노현구;이창식
    • 한국연소학회지
    • /
    • 제16권4호
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to analyze the effect of pilot injection strategy on the combustion and emissions characteristics in a four cylinder common-rail direct injection diesel engine fueled with biodiesel(soybean oil) blend. The tested fuel was mixed of 20% biodiesel and 80% ULSD(Ultra low sulfur diesel) by volume ratio. The experiments were performed under two load conditions, and results were compared with those of single injection. The experimental results showed that the ignition delay of BD20 was shorter than compared to that of ULSD in the case of low load condition. Also, the fuel consumption of BD20 was more higher than that of ULSD. Fuel consumption by applied pilot injection strategy were generally decreased compared with that of single injection. In the case of pilot injection, the exhaust emissions such as CO and HC emissions were decreased compared to the single injection.

커먼레일 시스템 연료분사관의 피로수명 개선에 관한 연구 (Study of Improvement in Fatigue Life of Fuel Injection Pipe of Common Rail System)

  • 송세암;배준호;정성윤;김철
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.991-998
    • /
    • 2013
  • 클린디젤 차량용 커먼레일 시스템의 연료분사관은 연료레일로부터 각각의 엔진 실린더에 연결된 인젝터로 연료를 공급하는 역할을 하며 반복 내압을 받게 된다. EURO 배기가스 배출규정 만족 및 연비향상을 위하여 요구되는 연료의 압력은 200MPa 이상으로 증가하고 있으며, 성형결함이 발생하지 않는 헤딩공정과 내압 피로수명 향상을 위한 자긴처리 기술이 요구되고 있다. 본 논문에서는 250MPa 급 반복내압을 만족할 수 있는 파이프 소재의 유동응력와 고주기 피로 데이터를 각각의 실험을 통하여 확보하였고, 연료분사관 앞 끝의 성형결함 여부를 판단하기 위하여 헤딩공정에 대한 유한요소해석을 수행하였다. 반복내압에 대한 내구수명 향상 및 신뢰성 확보를 위해 자긴공정에 대한 유한요소해석을 통하여 외경부의 인장잔류응력까지 고려한 최적 공정설계 수행 및 피로해석을 통한 설계의 타당성을 검증하였다.

수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향 (Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition)

  • 전지연;박현욱;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

직접분사식 압축착화엔진에서 DME의 2단 분사전략에 따른 엔진연소 및 배기특성에 관한 연구 (An Investigation for 2-stage Injection Strategy on Combustion and Emissions in a D.I Compression-ignition Engine Fueled with DME)

  • 정재훈;정동원;임옥택;표영덕;이영재
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.45-51
    • /
    • 2012
  • This work was investigated 2-stage injection strategy on combustion and emissions in a direct injection compression-ignition engine fueled with DME. Single cylinder engine was equipped with common rail. Injection pressure was 700bar, dSOI between the main injection and the pilot injection was varied. Diesel was used as compared fuel of DME in all cases. The results was shown that maximum pressure was higher than all cases and its amount of DME and diesel was similar. Regardless the pilot injection, the main fuel injection timing was same. The heat release rate of the main injection for diesel was high while that of pilot injection for DME was high. The THC was very low regardless of the fuel type and injection strategy. In the single injection, NOx was increased to retard of main injection timing regardless of the fuel type. NOx emissions was decreased with the retardation of the main injection timing regardless of the fuel type in the case of 2-stage injection strategy.

분사압력에 따른 CRDI 분사계의 분무특성에 관한 연구 (A study on the spray characteristics of CRDI system with injection pressure)

  • 김상암;왕우경;양정규
    • 수산해양기술연구
    • /
    • 제52권1호
    • /
    • pp.65-71
    • /
    • 2016
  • Injection rate, injection quantity and injection timing of fuel are controlled precisely by electric control in CRDI system. Particularly, injection rate being influenced with injection pressure affects to spray characteristics and fuel-air ratio, so it is a very important factor in diesel combustion. In this study, injection rates in accordance with injection pressure at a constant ambient pressure were measured with Zeuch's method. Under the same condition, non-evaporating spray images were taken with a high speed camera and analyzed carefully with Adobe Photoshop CS3. Macroscopic spray characteristics and breakup processes in the spray could be found from the examined and analyzed data. Injection start time and injection period were practically affected with injection pressure. Also, initial injection rate, spray penetration, spray angle and breakup of high density droplets region in the spray were affected with injection pressure. The results and techniques of spray visualization and injection rate measurement in this study would be practically effective to study a high pressure diesel spray for common rail direct injection system.

커먼레일 디젤 엔진용 피에조 인젝터 제어에 관한 연구 (A Study on the Piezo Injector Control Algorithm for CRDI Diesel Engines)

  • 오병걸;오승석;박영섭;이강윤;선우명호
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.54-62
    • /
    • 2009
  • The purpose of this study is to develop a piezo injector driver for common-rail direct injection diesel engines. In this research, we analyzed the electrical and mechanical characteristics of the piezo actuator through experiments. Current flow and charging voltage of the piezo injector are controlled by the PWM signal of variable duty ratio in order to realize both fast response and low peak current. The optimal switching duty ratio was designed by modeling and analyzing of the piezo driver circuit. In order to avoid resonance and unacceptably long settling time, appropriate frequency range of the PWM signal was derived based on the driver circuit model. The developed injector driver was validated by experiments under various fuel rail pressure, injection duration, and charging voltage.