• Title/Summary/Keyword: Common Structural Rules

Search Result 39, Processing Time 0.02 seconds

Comparison Analysis on Requirements of Structural Members by Application of the Harmonized Common Structural Rules (통합공통구조규칙(CSR-H) 적용에 따른 구조 부재 요구치의 비교 분석)

  • Sung, Chi Hyun;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.265-274
    • /
    • 2015
  • International organizations and classification societies established rules and regulations to which shipbuilders and ship operators should comply during design, construction, even operation keeping from hazard to life of crews and ocean environment. Hence, rules and regulations could be guidelines for design and construction of ship sometimes. In practical wise, ship structure designers be predisposed to design lightest and easy-to-product structures which satisfy rules and regulations. Therefore, changes of rules and regulations are remarkably important issue to related industries. In 2006, IACS established and released Common Structural Rules for Bulk Carrier and Common Structural Rules for Double Hull Oil Tanker. These CSRs are consolidated and unified rules of class society's rules. But these two rules are different from each other. IACS has plan to release unified rule of two ship type called Harmonized Common Structural Rule for Bulk Carriers and Oil Tankers. This new rule will be effective from July 2015. Hence, bulk carrier and double hull oil tanker whose contract date is on and thereafter July 2015 should be complied with CSR-H. Therefore, it is highly important to be aware of consequences and cause of consequences with respect to CSR-H. The object of this research is to compare requirements of structure scantling in way of midship area for selected target ship according to CSRs and CSR-H and to analysis cause of deviation between two rules.

A Study on the Weight Reduction of Mid-sized Bulk Carrier based on the Harmonized Common Structural Rules (통합공통구조규칙 기반 중형 살물선의 중량 절감에 관한 연구)

  • Na, Seung-Soo;Song, Ha-Cheol;Jeong, Sol;Park, Min-Cheol;Jeon, Hyoung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.336-342
    • /
    • 2016
  • H-CSR(Harmonized Common Structural Rules) integrating CSR-BC(Common Structural Rules for Bulk Carriers) and CSR-OT(Common Structural Rules for Double Hull Oil Tankers) came into effect in July of 2015, so that bulk carrier and double hull oil tanker should comply with this rules. So far, several studies for trend analysis of requirements of structure scantling based on H-CSR have been carried out briskly. However, those studies are rare to apply H-CSR in actual structural design of ships, especially bulk carriers. In this study, an automated system for compartment arrangement is used to search the design case that minimizes still water bending moment(S.W.B.M) in 38k bulk carrier designed by Far East Ship Design & Engineering Co. Ltd. Also, various structural design cases are considered by changing arrangement of structural members to reduce ship weight. The SeaTrust-Hullscan software developed by Korean Register is used to perform structural design of ships based on mother ship and proper design cases are selected by user. The DSA(Direct Strength Analysis) is performed to evaluate structural safety for the yielding and buckling analysis by using MSC Nastran software. The effect of weight reduction is verified by comparison of ship weight between mother ship and the selected design cases.

Ultimate strength performance of tankers associated with industry corrosion addition practices

  • Kim, Do Kyun;Kim, Han Byul;Zhang, Xiaoming;Li, Chen Guang;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.507-528
    • /
    • 2014
  • In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSR-H) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures.

Optimum Structural Design of Mid-ship Section of D/H Tankers Based on Common Structural Rules (CSR 을 활용한 이중선각유조선 중앙단면의 최적구조설계)

  • Na, Seung-Soo;Jeon, Hyoung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • It is necessary to perform the research works on the general structural designs and optimum structural designs of double hull tankers and bulk carriers due to the newly built Common Structural Rules(CSR). In this study, an optimum structural design of a mid-ship part of double hull oil tanker was carried out by using the CSR. An optimum structural design program was developed by using the Pareto optimal based multi-objective function method. The hull weight and fabrication cost obtained by the single and multi-objective function methods were compared with existing ship by the consideration of CSR and material cost which is recently increasing.

Incorporating mesh-insensitive structural stress into the fatigue assessment procedure of common structural rules for bulk carriers

  • Kim, Seong-Min;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.10-24
    • /
    • 2015
  • This study introduces a fatigue assessment procedure using mesh-insensitive structural stress method based on the Common Structural Rules for Bulk Carriers by considering important factors, such as mean stress and thickness effects. The fatigue assessment result of mesh-insensitive structural stress method have been compared with CSR procedure based on equivalent notch stress at major hot spot points in the area near the ballast hold for a 180 K bulk carrier. The possibility of implementing mesh-insensitive structural stress method in the fatigue assessment procedure for ship structures is discussed.

Structural Strength Assessment of Forward Cargo Hold for Kamsarmax CSR Bulk Carrier (Kamsarmax급 CSR Bulk Carrier의 Forward Cargo Hold 구조적 특성 및 안정성 검증)

  • Hwang, Sang-Wook;Park, Jeong-Jun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.17-20
    • /
    • 2011
  • The International Association of Classification Societies (IACS) had developed the Common Structural Rules (CSR) for bulk carriers as per the needs noted above. ISO and IMO GBS (Goal-Based Standards) are now being developed in this regard. This study has been prepared to verity the strength of forward cargo hold of 82,000 DWT class bulk carriers. A cargo hold/tank 3-D FE model was established to assess the structural adequacy of the primary structural members with the loading conditions. Full breadth model was established for the analysis considering asymmetric nature of structural layout and loading conditions. To summarize this result of structural assessment based on IACS CRS for bulk carrier, it is benefit to design this kind of bulk carriers and to study the strength assessment for the similar type of bulk carriers.

  • PDF

Consideration for AFRAMAX TANKER Applied Common Structural Rules (AFRAMAX TANKER의 CSR 적용에 대한 고찰)

  • Kim, Sung-In;Kim, Young-Nam;Kim, Gyeong-Rae
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.99-106
    • /
    • 2007
  • The IACS Common Structural Rules are to be applied for double hull tanker of more than 150m length with contracted after 1 April 2006. The objectives of the rules are to make more robust, safer ship and to ensure transparency of the technical background. In compliance of CSR, we had carried out prescriptive rules scantling determination and 3-D hold FE analysis of AFRAMAX TANKER. Prescriptive rules scantling determines the minimum required scantling, hull-girder longitudinal bending and shear strength, hull girder ultimate strength, local strength of plate and stiffener, strength of primary supporting member and fatigue assessment of the longitudinal stiffener end connections to the transverse bulkhead. 3-D hold FE analysis assesses the structural adequacy of the vessel's primary hull structure and major supporting members using yielding and buckling failure modes. So we could verify the strength assessment of AFRAMAX TANKER applied CSR.

  • PDF

The Structural Design of a Large Oil Tanker based on the CSR by Considering the Web Arrangement and Material Property (웨브 배치 및 재질 변화를 고려한 CSR 기반 대형유조선의 구조설계 연구)

  • Na, Seung-Soo;Yum, Jae-Seon;Kim, Yoon-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.598-605
    • /
    • 2010
  • The structural design of oil tankers and bulk carriers should be performed based on the Common Structural Rules(CSR) which were recently established by the International Association Classification Societies(IACS). At first, in the structural design viewpoint, the scantling and hullweight based on the CSR should be compared with those of existing rules, and then a minimum weight/cost design should be performed by considering the variation of the number of web and the material property. In this study, the optimum web space and material property will be proposed by performing a minimum weight/cost design of a large oil tanker, and the results will be compared with those of existing ship. The longitudinal members are determined by SeaTrust-Holdan developed by the Korean Register of Shipping(KR), and the transverse members are determined by NASTRAN and PULS.

Optimum Design for Longitudinal Strength Members of Double Hull Tankers with Central Long'l Bulkhead considering Buckling Thickness Requirement of Plate Panels based on Common Structural Rules (CSR기반 좌굴 두께 요건을 고려한 이중선체유조선의 종방향 구조부재의 최적설계 연구)

  • Jo, Young-Chun;Lee, Jung-Chul;Lee, Sang-Bock;Shin, Sung-Kwang;Jang, Chang-Doo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.117-126
    • /
    • 2011
  • The buckling assessment of plate panels described in common structural rules (CSR) is to be determined according to the buckling utilization factor with hull girder stresses calculated on net hull girder sectional properties. As the thickness requirement for the buckling assessment of plate panels is not explicitly given in CSR, a lot of time is spent to find the proper thickness of plate panels until reaching to an allowable buckling utilization factor. In this study, in order to reduce time and cost, the thickness requirement of plate panels satisfying buckling assessment was derived. The structural design system included with the thickness requirement for buckling assessment was developed. The system is called as Oil-tanker Automated Structural Investigation System (OASIS). The design result of longitudinal strength members using OASIS was verified by Nauticus Hull which is the rule scantling software of DNV. Finally, optimum design of a double hull tanker for the minimum weight using OASIS was presented.

  • PDF

Ultimate Longitudinal Strength Assessment of Ships' Hull Girders

  • Lee, Hun-Gon;Lee, Joo-Sung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.45-56
    • /
    • 2008
  • Recently, International Association Classification Societies (IACS) has adopted the Common Structural Rules (CSR) for Bulk Carriers and Tankers, which specifies the requirement associated with the ultimate strength of hull girder structure. The theoretical background and the results of verification study are neither well summarized nor released. Furthermore, the requirement is not a form of deterministic formula but a form of program in which source code is not disclosed. The reliability of the non-linear structural analysis program is verified through the comparison with the results of the analysis and the model test. Then, the reliability of the ultimate strength requirement in CSR is checked by comparing with the results of rigorous non-linear analysis.