• Title/Summary/Keyword: Commercial Optimization Software

Search Result 148, Processing Time 0.028 seconds

Development of a CAD-based General Purpose Optimal Design and Its Application to Structural Shape for Fatigue Life (캐드 기반 범용 최적설계 시스템 개발 및 피로수명을 위한 구조형상최적설계에의 응용)

  • Kwak, Byung-Man;Yu, Yong-Gyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1340-1345
    • /
    • 2003
  • In this paper, an integrated optimal design software system for structural components has been developed which interfaces existing commercial codes for CAD, CAE and Optimization. They include specialized optimal design software codes such as iSIGHT and VisualDOC, optimization module imbedded in CAD software developed by CAD developers, and optimal design software systems based on API of commercial CAD software. The advantages of the CAD imbedded optimal design approach and those of specialized optimal design software are taken to develop the system. The user defines optimal design formulation in the user interface for problem definition in the CAD control stage, where design variables are directly selectable from the CAD model and various properties and performance functions defined. The commercial CAD codes, Open I-DEAS are used for the development. The resulting software is minimally connected to CAD and CAE systems while keeping maximum independence from each other. This assures flexibility and freedom for problem definition. Fatigue life optimization is taken as a nontrivial application area. As a specific example, the shape design of a knuckle part of an automobile is performed, where the minimum fatigue life over the material domain in terms of the number of cycles of a curb strike are maximized under the constraint of not exceeding the current mass. The fatigue life has been improved by four times of the initial life. The developed software is illustrated to maintain the advantages of existing optimal design software systems while improving independency and flexibility.

  • PDF

Development of Interface Between Optimization Solver and Commercial EM Software for Design of Electromagnetic Devices (상용 전자장 해석 프로그램 연동을 위한 전기기기 최적설계 인터페이스 개발)

  • Kim, Min-Ho;Byun, Jin-Kyu
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.45-48
    • /
    • 2009
  • In this paper, we use the optimization design theory based on the finite element method and implement the optimal design of electromagnetic devices using COMSOL interface. COMSOL is one of the commercial EM software. Shape information for the design optimization is extracted by CAD in EM software. To calculate the shape of optimal design, sensitive analysis is applied to the design processing in MATLAB. To achieve the design objective in this paper, objective function is defined. According to the sensitive analysis based on the finite element method, we change the design variable after the sensitivity of the objective function is computed. To verify the proposed method, the results are compared with the initial design.

  • PDF

A Study on the Shape Optimization Design of the Knuckle by the Finite Element Analysis (유한요소해석에 의한 Knuckle의 최적형상설계에 관한 연구)

  • Rha, W.Y.;Lee, S.H.;Oh, S.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • The automotive industry faces many competitive challenges including weight and cost reduction to meet need for higher fuel economy. It is a trend that a lot of parts have been currently changed to an aluminum alloy from steel materials. It is required more precise analysis for practical load because of complexities and varieties of vehicle structure. In this study, the shape optimization using a FEA is performed to determine the design of the knuckle. The size optimization is carried out to find thickness while the stiffness constraints are satisfied. A commercial optimization software MSC/NASTRAN is utilized for the structural analysis and the optimization processes.

  • PDF

Basic Study on Performance Comparison of Structural Optimization Software Systems (구조최적설계 소프트웨어의 성능 비교에 대한 기초연구)

  • Choi, Wook Han;Huang, Cheng Guo;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1403-1413
    • /
    • 2014
  • Structural optimization is widely accepted in industrial fields. Structural optimization pursues improved performance of the structures. Recently, structural optimization is actively utilized due to the well-developed commercial design software systems. Three popular commercial structural optimization systems are investigated and compared. They are MSC.Nastran, Genesis and OptiStruct. The performance of the systems is analyzed based on the quality of the optimum solution and the computational time. Linear static response size, shape and topology optimizations are explored and compared with some test examples. For fair comparison, the systems are run in the same environment and the optimization parameters affecting the performance are unified. The optimization results are analyzed and the performances and characteristics of each software system are discussed.

Development of Shaft Analysis Model for Power Transmission System Optimization (동력전달 시스템의 최적화를 위한 축 해석 모델 개발)

  • Lee, Ju-Yeon;Kim, Su-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.8-16
    • /
    • 2021
  • This study develops a shaft analysis model for the optimization of the power transmission system. The finite element method was used for the shaft analysis model. The shaft and gear were assumed Timoshenko beams. Strength was evaluated according to DIN 743, and gear misalignment was calculated through ISO 6336 and the coordinate system rotation. The analysis software for a power transmission system was developed using Visual Studio 2019. The analysis results of the developed program were compared with those of commercial software (MASTA, KISSsoft, and Romax). We confirmed that the force, deformation, and safety factors at each node were the same as those of the commercial software. The absolute value of the gear misalignment of the developed program and commercial software was different. However, the gear misalignment tended to increase with increasing the displacement in the tooth width direction.

Shape Optimization to Minimize The Response Time of Direct-acting Solenoid Valve

  • Shin, Yujeong;Lee, Seunghwan;Choi, Changhwan;Kim, Jinho
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.193-200
    • /
    • 2015
  • Direct-acting solenoid valves are used in the automotive industry due to their simple structure and quick response in controlling the flow of fluid. We performed an optimization study of response time in order to improve the dynamic performance of a direct-acting solenoid valve. For the optimal design process, we used the commercial optimization software PIAnO, which provides various tools for efficient optimization including design of experiments (DOE), approximation techniques, and a design optimization algorithm. 35 sampling points of computational experiments are performed to find the optimum values of the design variables. In all cases, ANSYS Maxwell electromagnetic analysis software was used to model the electromagnetic dynamics. An approximate model generated from the electromagnetic analysis was estimated and used for the optimization. The best optimization model was selected using the verified approximation model called the Kriging model, and an optimization algorithm called the progressive quadratic response surface method (PQRSM).

Optimum Design of the Brushless Motor Considering Parameter Tolerance (설계변수 공차를 고려한 브러시리스 모터 출력밀도 최적설계)

  • Son, Byoung-Ook;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1600-1604
    • /
    • 2010
  • This paper presents the optimum design of the brushless motor to maximize the output power per weight considering the design parameter tolerance. The optimization is proceeded by commercial software that is adopted the scatter-search algorithm and the characteristic analysis is conducted by FEM. The stochastic optimum design results are compared with those of the deterministic optimization method. We can verify that the results of the stochastic optimization is superior than that of deterministic optimization.

Material Property Estimation of Paper for Dynamic Behavior Simulation (동적 거동 시뮬레이션을 위한 종이의 물성치 추정)

  • Lee, Geun-Pyo;Choi, Jin-Hwan;Lee, Soon-Geul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.103-111
    • /
    • 2008
  • This study proposes a technique to estimate the material property of a paper by using an experimental methods and commercial CAE software. Under gravitation, if one side of the paper is attached to the ground, the opposite side of paper is largely deformed, and vibrates freely. Since the paper has an orthotropic characteristic due to its treatment, the deformations in two orthogonal directions of the dry paper are different. An experimental method to measure the static deformation of the paper introduces this phenomenon. And dynamic behavior, frequency of free vibration is measured. And then. virtual prototypes that can represent the static and dynamic behavior are modeled by using the commercial CAE software $RecurDyn^{MT}$/MTT3D, which has been widely used by the printer makers. While comparing the deformation and frequency from the experiment and simulation, a design optimization technique in the commercial CAE software of R-INOPL, $RecurDyn^{TM}$/AutoDesign is used to estimate the material property such as Young's modulus, shear modulus and density of the paper.

A Study on Development of Commercial PIV Utilizing Multimedia (멀티미디어 대응 상용 PIV의 국산화개발에 관한 연구)

  • 최장운
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.652-659
    • /
    • 1998
  • The present study is aimed to develop a new PIV operating software through optimization of vector tracking identification including versatile pre-processings and post-processing techniques. And the result exhibits an improved version corresponding various input and output multimedia compared to previous commercial software developed by other makers. An upgraded identification method called grey-level cross correlation coefficient method by direct calculation is suggested and related user-friendly pop-up menu are also represented. Post-processings comprising turbulence statistics are also introduced with graphic output functions.

  • PDF

A Study on efficient contact analysis and optimum support design using commercial analysis software (상용 해석 소프트웨어를 이용한 접촉문제의 효과적 해석 및 최적 지지점 설계)

  • 최주호;원준호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.437-444
    • /
    • 2004
  • In this study, an optimum support design problem is considered to minimize displacement of stacked plates under self weight condition. During the displacement analysis, several kinds of contact arise between the plates themselves and support bar. These can be easily considered if commercial analysis software, which provides capability to solve the contact problem, is used. It is found, however, that the computing time is extraordinarily long due possibly to the generality of the software and also to the ignorance of the control parameters used in the software. In this paper, the contact condition is imposed directly by the authors, while the software is used only to solve the ordinary displacement analysis problem. In this way, the computing time is decreased remarkably by more than 30 times, while yielding the same accurate results. Optimization is conducted based on this efficient analysis method to find minimum number of supporting bars using the response surface algorithm.

  • PDF