• Title/Summary/Keyword: Commercial Mount

Search Result 39, Processing Time 0.02 seconds

Experimental Review on Dynamic Characteristics of the Commercial Mounts for Vibration Reduction (상업용 방진마운트의 동적 특성에 관한 실험적 고찰)

  • Moon, Seok-Jun;Shin, Y.H.;Chung, J.H.;Song, C.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.687-694
    • /
    • 2014
  • The mount suppliers are providing limited information on the dynamic characteristics of the mounts to some designers and some manufacturers of the high-precision machines. In this technical study, the experimental review was carried out about dynamic characteristics of five kinds of commercial passive mounts sold in the market. The dynamic characteristics, natural frequency and damping ratio, extracted from experimental tests were compared to the materials supplied by mount makers. In order to predict the performance of the high-precision machines with mounts, exact values of the dynamic characteristics of mounts should be used in the stage of numerical analysis.

A Research on Securing Initial Performance of Vibration Caused by Driveline (구동계 진동 초기성능 확보를 위한 시스템 단위 개선 연구)

  • Kuk, Jongyoung;Ryu, Sangheon;Lim, Donghwa;Lee, Teahoon;Yu, Seungwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.360-366
    • /
    • 2017
  • In commercial vehicles such as frame-based mid-size trucks, it is easy to reduce vibration caused by driveline with the cab mount system. There are no critical driveline vibration problems associated with these vehicles up to now. However, in the case of a similar grade of monocoque type mini-bus, there are no effective vibration isolation components such as a cab mount. Vibration caused by driveline is quite a complex problem to understand in terms of which part governs the phenomenon and how the problem can be solved. Thus, we have to manage the design factor about the driveline and mount system strictly at the early stage of vehicle development. Low frequency vibration caused by the driveline system is investigated in this study. We created the CAE driveline model and analyze low frequency vibration. Then contribution analysis about each design factor of driveline and mount system is performed. Finally, we can obtain the optimized design factor for a driveline system of a mini-bus, which is verified by the vehicle test results.

Hybrid Rubber Mount by Using Magnetic Force (자력을 이용한 하이브리드 고무 마운트)

  • Ahn, Young Kong;Kim, Dong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.236-246
    • /
    • 2014
  • This paper presents a hybrid rubber mount with magnet to isolate effectively the vibration in vehicle, forklift, and so on. The hybrid mount does not have any controller of the magnetic force. Dynamic stiffness of the mount is reduced by only magnetic suction according to the applied magnetic field and damping coefficient increased. Performance of conventional rubber mount with using electromagnet has been investigated by MTS Tester. The governing equation of the hybrid mount was derived and verified by comparison with experimental and theoretical results. The equation can be used practically and usefully in the design of the mount and analysis of the mounting system. The hybrid mount provides excellent performance in vibration isolation and its structure is very simpler than active with controller and a semi-active mount with a functional fluid. Furthermore, production cost of the mount using permanent magnets is very lower than that of the active mount with electromagnets. Therefore, commercial potential of the mount is very high.

An inertia-type hybrid mount combining a rubber mount and a piezostack actuator for naval shipboard equipment

  • Moon, Seok-Jun;Choi, Sang-Min;Nguyen, Vien-Quoc;Oh, Jong-Seok;Choi, Seung-Bok;Chung, Jung-Hoon;Kwon, Jung-Il;Jung, Woo-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.62-80
    • /
    • 2013
  • This paper has been focused on developing a new hybrid mount for shipboard equipment used in naval surface ships and submarines. While the hybrid mount studied in our previous research was 100 kg-class series-type mount, the new hybrid mount has been designed as an inertia-type mount capable of supporting a static of 500 kg. The proposed mount consists of a commercial rubber resilient mount, a piezostack actuator and an inertial mass. The piezostack actuator connected with the inertial mass generates actively the control force. The performances of the proposed mount with a newly designed specific controller have been evaluated in accordance with US military specifications and compared with the passive mount. An isolation system consisting of four proposed mounts and auxiliary devices has been also tested. Through a series of experimental tests, it has been confirmed that the proposed mount provides better performance than the US Navy's standard passive mounts.

Computational Modeling of Mount Joint Part of Machine Tools (공작기계 마운트 결합부의 전산 모델링)

  • Ha, Tae-Ho;Lee, Jae-Hak;Lee, Chan-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1056-1061
    • /
    • 2012
  • FEM analysis is essential to shorten the development time and reduce the cost for developing high-performance machine tools. Mount joint parts play important role to ensure static and dynamic stability of machine tools. This paper suggests a computational modeling of mount joint part of machine tools. MATRIX27 element of ANSYS is adopted to model mount joint parts. MATRIX27 allows the definition of stiffness and damping matrices in matrix form. The matrix is assumed to relate two nodes, each with six degrees of freedom per node. Stiffness and damping values of commercial mount products are measured to build a database for FEM analysis. Jack mounts with rubber pad are exemplified in this paper. The database extracted from the experiments is also used to estimate of stiffness and damping of untested mounts. FEM analysis of machine tools system with the suggested mount computational model is performed. Static and dynamic results prove the feasibility of the suggested mount model.

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-Vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.511-517
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

  • PDF

Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-vibration Mount (방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰)

  • Han, Hyung-Suk;Son, Yoon-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.320-326
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

Development of Engine Mount Analysis Software (차량용 엔진마운트 해석 전용 S/W 개발 사례)

  • 원광민;윤희욱;강구태;윤원석;주서진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.700-704
    • /
    • 2002
  • To design engine mount system efficiently, lots of analysis works are conducted for the prediction of the dynamic behavior of a vehicle as varying design parameters of the engine mount system. Thus it is very important to choose an appropriate analysis software. Because one usually carries out different types of analysis based on relatively simple models, so using a specialized in-house software is more effective than using several commercial softwares. In this paper a case study is introduced to develop an analysis software to design engine mount system.

  • PDF

Optimum Shape Design of Engine Mounting Rubber Using a Parametric Approach (형상 파라미터화 방법을 이용한 엔진 마운트용 고무의 형상 최적화)

  • Kim, J.J.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.33-41
    • /
    • 1994
  • The procedure to design the engine mount is briefly discussed and the optimum shape design process of engine mounting rubber using a parametric approach is suggested. An optimization code is developed to determine the shape to meet the stiffness requirements of engine mounts, coupled with the commercial nonlinear finite element program ABAQUS. A bush type engine mount used in a current passenger car is chosen for an application model. The shape from the result of the parameter optimization is determined as a final model with some modifications. The shape and stiffness of each optimization stage are shown and the stiffness of the optimized model along the principal direction is compared with the design specification of the current model. Finally, an overview of the current status and future works for the engine mount design are discussed.

  • PDF

Structural Stability Analysis of a Mount in 120mm Self-propelled Mortar (120밀리 자주박격포 사격 충격에 따른 마운트 구조 안정성 분석)

  • Kim, Dong-Whi
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.836-843
    • /
    • 2018
  • In this paper, dynamic model of 120mm self-propelled mortar is developed, and multi flexible body dynamics analysis is performed to analyze stresses occurring in the mount during mortar fire. For this, vehicle dynamic system, mortar dynamic system, and finite element mount model are proposed. The commercial program Recurdyn is used in the analysis. As a result of the analysis, the maximum stress(146.9MPa) occurred at the mount side plate. In order to analyze the validity of the analysis results, we performed strain measurement tests by selecting three major points, and the errors of results were 7.91%, 11.15%, and 18.23%, respectively. It is confirmed that the tendency of analysis and test is similar.