• 제목/요약/키워드: Commercial Finite Element Code

검색결과 269건 처리시간 0.025초

길이방향으로 주름진 원통셸의 진동 해석 (Vibration Analysis of Longitudinally Corrugated Cylindrical Shells)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.851-856
    • /
    • 2016
  • In this paper, the free vibration characteristics of longitudinally corrugated cylindrical shells is investigated by the theoretical analysis. The equivalent homogenization model is adapted to investigate the overall mechanical behavior of these corrugated shells. The corrugated element can be represented as an orthotropic material. Both the effective extensional and flexural stiffness of this equivalent orthotropic material are considered in the analysis. To demonstrate the validity of the proposed theoretical approach, the theoretical results are compared with those from 3D finite element analysis using ANSYS commercial code. Some numerical results are presented to check the effect of the geometric properties.

추락낙하 사고 시 지면과 충돌하는 고준위폐기물 처분용기의 비선형구조해석 (Nonlinear Structural Analysis of the Spent Nuclear Fuel Disposal Canister Subjected to an Accidental Drop and Ground Impact Event)

  • 권영주
    • 한국전산구조공학회논문집
    • /
    • 제32권2호
    • /
    • pp.75-86
    • /
    • 2019
  • 원자력발전의 최대 걸림돌은 사용 후 핵연료인 고준위폐기물이다. 높은 방사능과 발생하는 열은 사용 후 핵연료의 안전한 처분을 어렵게 하고 있다. 현재 유일한 처리방법은 심지층 처분기술이다. 본 논문은 이와 같은 심지층 처분기술의 핵심기술 중의 하나인 처분용기의 구조안전성 설계문제를 다루고 있다. 특히 처분장에서 처분용기 처분 시 사고로 운송차량에서 추락낙하 하여 지면과 충돌하는 경우 처분용기에 가해지는 충격력에 의하여 처분용기에 발생하는 응력 및 변형에 대한 비선형구조해석을 수행하였다. 해석의 주된 내용은 심지층 처분장에서 운반차량으로 처분용기 운반 중 사고로 추락낙하 하여 지면과의 충돌 시에 처분용기에 가해지는 충격력을 기구동역학해석 상용 컴퓨터코드인 RecurDyn으로 구하고 이 충격력에 의하여 처분용기에 발생하는 응력 및 변형을 유한요소 정적 구조해석 상용 컴퓨터코드인 NISA를 이용하여 구한 것이다. 해석결과는 충돌 충격 시간 중 발생하여 처분용기에 가해지는 충격력에 의하여 처분용기, 특히 처분용기의 위 덮개 혹은 아래 덮개에 큰 응력과 대변형이 발생함을 보여주고 있다.

액체 로켓 터보 펌프 터빈의 천이 열전달 및 구조 해석 (Transient Heat Transfer and Structural Analyses for the Turbopump Turbine of a Liquid Rocket Engine)

  • 유재한;최지훈;이인;한재흥;전성민;김진한
    • 한국항공우주학회지
    • /
    • 제32권3호
    • /
    • pp.58-65
    • /
    • 2004
  • 유한요소법을 이용하여 액체 로켓 엔진 터보 펌프 터빈의 천이 열전달 및 구조 해석이 수행되었다. 해석 모델은 3차원 8절점 등매개변수 솔리드 요소로 구성되었으며, 전체 모델의 1/80만이 해석되었다. 열 스파이크를 포함하는 시동 조건과 정상상태에서의 하중이 고려되었다. 블레이드 면 위의 열전달 계수는 상용 열유동 해석 프로그램인 Fluent를 이용하였다. 개발된 유한 요소 코드를 이용하여 시동 및 정상상태에서 천이 열전달 응답을 구하였다. 또한, 원심력과 열하중이 가해질 때, 최대 응력 및 슈라우드의 변위를 구하였다.

공작기계용 볼 베어링의 억지끼워맞춤과 내부틈새변화에 관한 해석적 연구 (FE-analysis of Shrink Fits and Internal Clearance for Ball Bearing of Machine Tool)

  • 김웅;이춘만;황영국
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.135-141
    • /
    • 2009
  • The bearing clearance is influenced by shrink fit and thermal expansion during operation. The designer must take into account the reduction of clearance after installation to the interference fits, and thermal expansion must be considered. The purpose of this study is to grasp the internal clearance variation and behavior of a bearing which is a deep connected with fatigue life of bearing and performance of spindle through FEM(Finite Element Method). Finite element analysis is performed by using commercial code ANSYS according to variation of thermal condition and rotational speeds. This paper presents correct negative internal clearance according to temperature during operation. Furthermore, interrelation between thermal expansion and contraction are presented to maintain adequate contact force for three type of spindle system (HSK-A60, HSK-40E, HSK-32E). The influence of the centrifugal force and Internal clearance variation of bearing is studied to operating rotational speed.

대형 압력용기 제작을 위한 9Ni-4Co-0.3C 강의 드로잉공정 설계에 관한 연구 (Design of drawing process of 9Ni-4Co-0.3C steel to make a large pressure vessel)

  • 홍진태;이석렬;김경진;양동열;이경훈;최문선
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.93-99
    • /
    • 2005
  • In this work, computer-aided process design is carried out to develop an optimal preform of a pressure vessel. Knowledge-based rules are employed to design the preform, and they are formulated using the handbooks of plasticity theories. In the FE-analysis, a commercial finite element code, ABAQUS was employed. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed fur various combinations of die design parameters. The length of the land of die, the clearance between punch and die and the clearance between the blank holder and die are optimized to minimize the forming load. The results of the simulations are verified with the experiments which are scaled down to one tenth of the actual size.

스탬핑 순서가 미치는 미세요소 변형 수치해석 (A numerical deformation analysis of micro elements by stamping orders)

  • 이창희;김용연
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.156-162
    • /
    • 2005
  • In this paper, we study the mechanism of lead deformation by numerically simulating the stamping process by means of a commercial finite element code. It is very important to analyze effects that the lead shape makes on the lead deformation, because the lead shape is often modified in order to minimize the deformation or to increase the buckling critical load of the punch. Therefore the stamping process, first, numerically simulated by considering as a quasi-static problem. Second, the effect on the lead deformation due to the lead shape variation, a linear lead geometry and a bent lead, was numerically analyzed and discussed. Finally, the punching order was optimized fur multi-lead generating stamping process. The results show that the bent lead is little bit more shifted than the linear lead after the punching process. But the bent lead is vertically less deformed than the linear lead. The punching order to successively generate the lead is good to keep the lead space uniform. The results will be very effectively applied for the design of the blanking or punching dies in industry.

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed)

  • 황영국;조영덕;이춘만;정원지
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1) (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1))

  • 황영국;정원지;이춘만
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

유리섬유 강화 플라스틱과 알루미늄 합금 접합을 위한 유한요소해석 (Finite element analysis for joining glass fiber reinforced plastic and aluminium alloy sheets)

  • 조해용;김동범
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.78-84
    • /
    • 2015
  • Self-piercing rivet(SPR) is mechanical joining methods and which can be joining dissimilar materials. Unlike conventional riveting, SPR also needs no pre-drilled holes. During plastically deformation, SPR pierces upper sheet and joins it to under sheet. SPR has been mainly applied to the joining the automobile body and some materials, such as glass fiber reinforced polymer and aluminum alloy, which represent the sheet-formed materials for lightweight automobile. Glass fiber reinforced plastic(GFRP) has been considered as a partial application of the automobile body which is lighter than steels and stronger than aluminium alloys. It is needed SPR to join Al alloy sheets and GFRP ones. In this paper, in order to design the rivet and anvil, which are suitable for GFRP, the joinability was examined through simulations of SPR joining between GFRP and Al alloy sheets. For this study, AutoCAD was used for the modeling and the simulated using commercial FEM code DEFORM-2D. The simulated results for SPR process joining between GFRP and Al alloys were confirmed by the same conditions as experimental trials.

재료변수와 공정변수가 스템핑 성형성에 미치는 영향 연구 (Sensitivity Analysis of Material and Process Variables Affecting on the Stamping Formability)

  • 김영석;박기철
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2246-2256
    • /
    • 1996
  • To investigate the effect of material and precess variables on stamping formability of sheet materials, simulations for the cup drawing and the Yoshida buckling test were carried out using ABAQUS, commercial nonlinear finite element analysis code. The various factor effects on stamping formability of sheet materials were analyzed by the designed process according to Taguch's orthogonal array experiment. Cup drawing simulation showed that local neckling was very sensitive to plastic anisotropy parameter of sheet material and friction coefficient between sheet and tool interface. Simulations for the Yoshida buckling test have clarified that buckling behaviour of sheet material was mostly susceptible to yield stress and sheet thickness mostly. However, plastic anisotropy parameter and strain hardening coefficient affect moderately buckling behaviour of steel sheets after the buckling initiation.