• 제목/요약/키워드: Commercial Finite Element Code

검색결과 269건 처리시간 0.029초

강철봉 제동 시스템에서의 감속파형 재현을 위한 유한 요소 해석 (FE simulation for the Reconstruction of Deceleration Profile in Steel Bar Breaking System)

  • 이종길;석환호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.213-216
    • /
    • 2008
  • Sled test id widely used to evaluate the performance of occupant's safety system in frontal crash environment without having to conduct a full-scale crash test. Steel bar breaking system is used to generate deceleration profile which is experienced by passengers in frontal crash. In this study, deformation analyses of steel bars were conducted using a commercial FE code. Several guidelines were proposed to improve the accuracy of simulation.

  • PDF

Development of Automated Analysis System for Model Plane Engine Using Fuzzy Knowledge Processing

  • Lee, Joon-Seong;Lee, Shin-Pyo
    • 한국지능시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.171-176
    • /
    • 2002
  • This paper describes a new automated analysis system for model plane engine. An automatic finite element (FE) mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry technique, is incorporated into the system, together with one of commercial FE analysis codes, ANSYS, and one of commercial solid modelers, Designbase, The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of plane engine to be analyzed, i.e. deformation analysis, thermal analysis and so on. The FE models are then automatically analyzed by the FE analysis code. Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns, the assignment of material properties and boundary conditions onto the geometry model are only the interactive processes to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a personal computer environment. The proposed analysis system is successfully applied to evaluate a model plane entwine.

상용 유한요소코드 사용자-서브루틴을 이용한 저온용 고장력강 (EH36)의 파단 시뮬레이션 (Fracture Simulation of Low-Temperature High-Strength Steel (EH36) using User-Subroutine of Commercial Finite Element Code)

  • 정준모;남웅식;김영훈
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.34-46
    • /
    • 2014
  • This paper discusses a new formulation for the failure strain in the average stress triaxiaility domain for a low-temperature high-strength steel (EH36). The new formula available at a low average stress triaxiality zone is proposed based on the comparison of two results from tensile tests of flat type specimens and their numerical simulations. In order to confirm the validity of the failure strain formulation, a user-subroutine was developed using Abaqus/Explicit, which is known to be one of the most popular commercial finite element analysis codes. Numerical fracture simulations with the user-subroutine were conducted for all the tensile tests. A comparison of the engineering stress-strain curves and engineering failure strain obtained from the numerical simulation with the user-subroutine for the tensile tests revealed that the newly developed user-subroutine effectively predicts the initiation of failure.

인공지능을 이용한 3차원 구조물의 최적화 설계 : 마이크로 가속도계에 적용 (Optimal Design for 3D Structures Using Artificial Intelligence : Its Application to Micro Accelerometer)

  • Lee, Joon-Seong
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.445-450
    • /
    • 2004
  • 본 논문은 실질적인 최적화 구조물의 설계를 위한 시스템에 대한 것으로 퍼지이론에 바탕을 둔 자동 유한요소 생성 망 기술과 계산 기하학적 기술, 해석코드 및 솔리드모델러를 시스템에 통합시켰다. 최적해 또는 만족해는 자동해석 시스템과 함께 탐색공간을 위한 유전자 알고리즘을 이용하여 자동적으로 탐색되어 진다. 또한, 유전자 알고리즘을 이용함으로써 본 설계 시스템은 다차원 해를 얻을 수 있다. 개발된 시스템은 터널전류에 바탕을 둔 마이크로 가속도계의 형상설계에 적용하였다.

휠베어링 고무 실의 접촉력에 관한 연구 (A study on Contact force of Rubber Seal for wheel bearing)

  • 최노진;허영민;이광오;강성수
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.145-151
    • /
    • 2006
  • Wheel bearing unit has been exclusively applied to car wheel supporting device. The seal for wheel bearing is required to have both high sealing effects and low reaction forces because wheel bearing are operated on adverse environmental conditions such as mud and splash water. High sealing effects are for the protection of bearing ball wear from dust influx. In order to ensure high sealing effects, it is a easiest way to increase contact force which are affected by geometric characteristics, material properties and interferences between seal and inner bearing but induces higher wear phenomena. Interferences in all variables are most important factor to determine the performance of wheel bearing. In this study, optimization of interference amount was performed with finite element analysis with commercial code ABAQUS. For the sake of finite element analysis, tensile tests of rubber material were conducted and governing equation of nonlinear behavior was achieved. Hock-up bearing was manufactured with optimized interference amount. Results of torque and mud spray tests using this bearing unit are performed. Less torque and moisture influx of bearing with optimized interference amount is evidence to validity of this study.

다이오드 레이저를 이용한 SM45C 환봉 표면경화 열처리의 유한요소해석 (Finite element analysis for surface hardening of SM45C round bar by diode laser)

  • 조해용;김관우;이제훈;서정;김종도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.683-688
    • /
    • 2007
  • Surface heat treatment of SM45C round bar by diode laser was simulated to find it's condition by using commercial finite element code MARC. Due to axisymmetric geometry, a quarter of model for SM45C round bar was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat and mass density were given as a function of temperature. Rotation speed of round bar and feed rate of beam were considered to design heat source model. Shape parameter values of heat source were determined by beam profile. As results, Three dimensional heat source model for diode laser beam conditions of surface hardening has been designed by the comparison between the finite element analysis results and experimental data on SM45C round bar. Diode laser surface hardening for SM45C round bar was successfully simulated and it should be useful to determine optimal heat treatment condition.

  • PDF

유체로 연성되고 두께가 상이한 두 직사각 평판의 실험적 모드 해석 (Experimental Modal Analysis of Two Unequal Rectangular Plates Coupled with Fluid)

  • 유계형;정경훈;이성철
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2541-2549
    • /
    • 2002
  • In order to study the vibration characteristics of fluid-structure interaction problem, two rectangular plates coupled with bounded fluid were investigated. Experimental modal analyses were carried out to extract the modal parameters of the system. Additionally. finite element modal analyses performed using a commercial computer code, ANSYS. The FEM solutions were compared with the experimental solutions to verify the finite element model. As a result, the comparison between the experiment and FEM results showed excellent agreement. The transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The thickness effect of the plates on the fluid-coupled natural frequencies and mode shapes was investigated for two different cases with the identical thickness and the unequal thickness. It was found that the coupled natural frequencies increase with the thickness for the identical plates regardless of the mode phase. The experimental and the finite element analysis results showed that the out-of-phase mode shapes were deviated from the symmetrical mode shapes in the plate transverse direction fur the unequal plate thickness case.

유한요소법을 이용한 금속절삭의 모델링 (Modeling of Metal Cutting Using Finite Element Method)

  • 김경우;김동현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1799-1802
    • /
    • 2003
  • The commercial success of a new product is influenced by the time to market. Shorter product leadtimes are of importance in a competitive market. This can be achieved only if the product development process can be realized in a relatively small time period. New cutting inserts are developed by a time consuming trial and error process guided by empirical knowledge of the mechanical cutting process. The effect of previous cutting on chip formation and the surface residual stresses has been studied. The chip formation is not affected much. There is only a minor influence from the residual stress on the surface from tile first cutting on the second pass chip formation. Thus, it is deemed to be sufficient to simulate only the first pass. The influence of the cutting speed and feed on the residual stresses has been computed and verified by the experiments. It is shown that the state of residual stresses in the workpiece increases with the cutting speed. This paper presents experimental results which can be used for evaluating computational models to assure robust solutions. The general finite element code ABAQUS/Standard has been used in the simulations. A quasi-static simulation with adiabatic heating was performed. The path for separating the chip from the workpiece is predetermined. The agreement between measurements and calculation is good considering the simplifications introduced.

  • PDF

유한요소 해석법을 이용한 컨벡스 배열형 초음파 탐촉자의 설계 및 제작 (Design and Fabrication of a Convex Array Ultrasonic Transducer with Finite Element Analysis)

  • 이수성;권재화;은홍;노용래
    • 한국음향학회지
    • /
    • 제21권7호
    • /
    • pp.592-599
    • /
    • 2002
  • 본 연구에서는 상용 유한요소 해석 프로그램인 PZflex를 이용하여 초음파 탐촉자를 설계하고 이에 따라 제작하였다. 제작된 탐촉자는 복부 진단용에 적합한 크기와 형태로 중심 주파수 5 ㎒에 128개의 압전 소자가 곡면상에 1차원 배열된 컨벡스 (convex)형이며 두 층의 음향정합층, 하나의 후면층 그리고 각 압전소자 간의 커프로 구성된다. 제작된 탐촉자의 성능을 평가하여 설계치의 타당성을 검증하였으며, 등가회로 해석법에 의한 결과와 비교하여 유한 요소 해석법에 의한 설계법의 우수성을 확인하였다

Nonlinear Finite Element Analysis of Containment Vessel by Considering the Tension stiffening Effect

  • Lee, Hong-Pyo;Choun, Young-Sun;Seo, Jeong-Moon;Shin, Jae-Chul
    • Nuclear Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.512-527
    • /
    • 2004
  • This paper describes the finite element (FE) analysis results of a 1/4 scale model of a prestressed concrete containment vessel (PCCV) by considering the tension stiffening effect, which is a result of the bond effect between the concrete and the steel. The tension stiffening model is assumed to be an exponential form based on the relationship between the average stress and the average strain of the concrete. The objective of the present FE analysis is to evaluate the ultimate internal pressure capacity of the PCCV, as well as its failure mechanism, when the PCCV model is subjected to a monotonous internal pressure beyond is design pressure capacity. With the commercial code ABAQUS, the FE analysis used two concrete failure criteria: a 2-dimensional axi-symmetric model with modified Drucker-Prager failure criteria and a 3-dimensional model with a damaged plasticity mod디. The results of our FE analysis on the ultimate pressure capacity and failure modes of PCCV have a good agreement with the experimental data.