• Title/Summary/Keyword: Commercial Dynamic Simulation Program

Search Result 59, Processing Time 0.027 seconds

Computer Simulation of Dynamic Response of Vehicles on Rough Ground (노면가진에 의한 차체의 동적거동에 관한 연구)

  • 조선휘;이건우;박종근;조병관;송성재;한규진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.419-425
    • /
    • 1988
  • It would be very useful if the dynamic response of a vehicle over rough ground could be predicted at the early design stage. This became more promising with the recent progress in computer hardware and software technologies. In this study, a model of a passenger car has been developed for the analysis of its dynamic response. This model can be easily used for the other passenger cars with little modification. This passenger car was modeled to be composed of lumped masses, rigid bodies, and the suspension systems with nonlinear properties. Even though a commercial dynamic simulation program, ADAMS, was used in this study, the developed model is valid for any other simulation program. Finally, the validity of the developed model and the analysis result was verified by an experiment.

A Simulation Program for the Braking Characteristics of Tractor-Semitrailer Vehicle (Tractor-Semitrailer 차량의 제동특성 프로그램 개발)

  • 서명원;박윤기;권성진;양승환;박병철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.152-167
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and when the road is wet or slippery. Under these conditions, the truck can spin out or the tractor can jackknife or the trailer can swing out. To design the air brake system for the commercial vehicle, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about the tractor-semitrailer and the air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the program. Designers can use this simulation program for understanding the braking characteristics such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

Development of a Dynamic Simulation Program Including a Wheel-Rail Contact Module (휠-레일 접촉모듈을 포함한 동역학 해석 프로그램 개발)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Various programs for dynamic simulation of the railway vehicle have advantages and disadvantages. These programs have limitation that cannot express a large deformable body for an wire of the railway vehicle. In this study, a program for dynamic simulation of the railway vehicle is developed. And the rigid, flexible and large deformable body can be simulated using this program. Its reliability is verified by comparison with a commercial program. Also, a wire is considered as the large deformable body and a sliding joint which connects the rigid body to the large deformable body is included. Moreover, as the wheel-rail contact module is added, the dynamic simulation of the railway vehicle can be analyzed using the developed program.

Wind Turbine Simulation Program Development using an Aerodynamics Code and a Multi-Body Dynamics Code (풍력발전시스템의 유연체 다물체 동역학 시뮬레이션 프로그램 개발)

  • Song, Jin-Seop;Rim, Chae-Whan;Nam, Yong-Yun;Bae, Dae-Sung
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.50-57
    • /
    • 2011
  • A wind turbine simulation program for the coupled dynamics of aerodynamics, elasticity, multi-body dynamics and controls of turbine is newly developed by combining an aero-elastic code and a multi-body dynamics code. The aero-elastic code, based on the blade momentum theory and generalized dynamic wake theory, is developed by NREL(National Renewable Energy Laboratory, USA). The multi-body dynamics code is commercial one which is capable of accounting for geometric nonlinearity and twist deflection. A turbulent wind load case is simulated for the NREL 5-MW baseline wind turbine model by the developed program and FAST. As a result, the two results agree well enough to verify the reliability of the developed program.

A Simulation Program for the Braking Characteristics of 8$\times$4 Vehicles (8$\times$4 차량의 제동특성 시뮬레이션 프로그램 개발)

  • 서명원;박윤기;권성진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.119-128
    • /
    • 2001
  • Recently safety systems for the commercial vehicle have been rapidly developed. However, we still have many problems in the vehicle stability and the braking performance. Especially, a commercial vehicle may meet a dangerous braking condition when the vehicle is lightly loaded or empty and the road is wet or slippery. To design the air brake system for commercial vehicles, since the air brake system has many design variables, there must have been intensive researches on a method how to prevent dynamic instability and how to maximize the vehicle deceleration. In this study, mathematical models about an 8$\times$4 vehicle and an air brake system including an ABS controller have been constructed for computer simulation. Also, simple examples are applied to show the usefulness of the computer program. Designers can use this simulation program for understanding the braking characteristics of 8$\times$4 commercial vehicles such as trajectory, braking distance, longitudinal deceleration, lateral deceleration, and yaw rate on various road conditions.

  • PDF

Dynamic analysis of horizontal linear vibrating motor using DAFUL program (DAFUL 프로그램을 이용한 슬림형 핸드폰 수평 선형 진동모터의 동적 해석)

  • Choi, Chang-Hwan;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5323-5329
    • /
    • 2013
  • Many companies have tried to develop the horizontally vibrating linear motor, for sliming the smart phone. Mathematical modeling and analysis is one of method to simulate the dynamic performance of the horizonatally vibrating linear motor. However, the horizontally vibrating linear motor vibrates in twisting mode because there are two kinds of force acting on the vibrating part. One is are the horizontal force by Lorentz force. The other is the vertical force by attraction force between magnet of vibrating part and bracket and the gravity force of vibrating part. However, those are very difficult to be included in mathematical modeling which generate the simulation errors. In this paper, we perform MFBD (multi flexible body dynamics) simulation using commercial dynamic analysis program "DAFUL". In our new model, the force effects those are neglected in mathematical model, are included. For the verification, the simulation results are compared with the experiment results with manufactured prototype.

Study on the Dynamic Behaviors of Wave Energy Converter by using RecurDyn (리커다인을 이용한 파력발전기 동적거동 연구)

  • Sohn, Jeong-Hyun;Jun, Chul-Woong;Kim, Min-Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, the multi-body dynamics model for a wave energy converter is established. The equations of motions for the mechanical parts of the wave energy converter are derived to analyze the dynamic behavior. A spring method with the same performance as the counter weight method is proposed. The counter weight method and spring method are analyzed for evaluating the performance of the wave energy converter. RecurDyn program which is a kind of commercial multi-body dynamics program is used to perform the dynamic simulation of the wave energy converter.

Development of a Dynamic Simulation Program for Railway Vehicles (철도차량을 위한 동역학 해석 프로그램 개발)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Young-Guk
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.473-479
    • /
    • 2009
  • Dynamic analysis is necessary for the High-Speed Railway vehicle which aims to run on max 400km/h. Especially, dynamic simulation using CAE(Computer Aided Engineering) can help to reduce the time of development of the High-Speed Railway vehicles. Also, it helps to reduce prices and improve the quality such as safety, stability and ride. There are many dynamic software for a railway vehicle, such as Vampire and ADAMS-Rail. There are limitations for each software and difficulties to analyze overall dynamics for entire railway system. To overcome these limitations, in this study, a program which can simulate entire railway vehicles was developed. This program is easy to use because it was developed using C++, which is object-oriented programming language. In addition, the basic platform for the development of dynamic solver is prepared using the nodal, modal coordinate system with a wheel-rail contact module. Rigid, flexible and large deformable body systems can be modeled by a user according to the characteristic of a desired system. Its reliability is verified by comparison with a commercial analysis program.

  • PDF

Selection of the time Integration algorithm for transient stability analysis program (과도 안정도 해석 프로그램을 위한 최적 시 적분 알고리즘 선정방안)

  • Kim, D.J.;Cho, Y.S.;Jang, G.;Lee, B.;Kwon, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.122-124
    • /
    • 2003
  • Power system analysis is generally based on computer simulation and time-domain simulation is used to assess it's dynamic performance. This paper deals with the selection of proper integration engine for large-scale power system dynamic simulation. Simulation results obtained from the selected algorithm are compared to those of commercial program.

  • PDF

Design and Analysis of a Linear Feeder using Computer Simulation (컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF