• Title/Summary/Keyword: Commercial Catalysts

Search Result 188, Processing Time 0.024 seconds

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

Synthesis of Low-Priced Catalyst from Coal Fly Ash for Pyrolysis of Waste Low Density Polyethylene (석탄비산재(石炭飛散災)로부터 저밀도(低密度) 폴리에틸렌 폐기물(廢棄物) 열분해용(熱分解用) 저가(低價) 촉매(觸媒) 합성(合成))

  • Jeong, Byung-Hwan;Na, Jeong-Geol;Kim, Sang-Guk;Mo, Se-Young;Chung, Soo-Hyun
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.48-55
    • /
    • 2007
  • A low-priced catalyst for pyrolysis of LDPE has been synthesized. Fly ash, which is waste material generated from coal-fired power plants was used as silica and alumna sources for solid acid catalyst. Amorphous silica-alumina catalysts (FSAs) were pre-pared by dissolution of silica and alumina from fly ash, followed by co-precipitation of the dissoluted ions. A series of LDPE pyrolysis were carried out in a thermogravimetric analyzer to investigate the effects of synthesis conditions such as NaOH/fly ash weight ratio and activation time one catalytic performance of FSAs. The physical properties of FSAs were examined and related to their catalytic performances. FSA(1.2-8) synthesized with NaOH/fly ash weight ratio of 1.2 and the activation time of 8 hours showed the best catalytic performance. The catalytic performance of FSA(1.2-8) was comparable with that of commercial catalysts and it was concluded that the FSA could be a good candidate for catalytic use in the recycling of waste polyolefins.

Preparation of Wall Paper Coated with Modified TiO2 and Their Photocatalytic Effects for Removal of NO in Air (변조된 TiO2 광촉매를 이용한 벽지제조와 대기 중의 NO 제거 효과)

  • Kwon, Tae-Ri;Roo, Wan-Ho;Lee, Chul-Woo;Lee, Won-Mook
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, $TiO_2$ powders were prepared by hydro-thermal synthesis with titanium tetra isopropoxide. The prepared $TiO_2$ and the commercial $TiO_2$(P-25, Degussa) were by impregnating $H_2PtCl_6$ solution or the leached solution from the waste catalytic converter of automobile. Modified photocatalysts were analyzed by ICP-AES, UV-DRS, XRD, SEM. And band-gap energy of modified photo-catalyst was found to decreased to 1.76eV and basic structure was changed upon modification by leached solution. Modified photocatalysts were coated on the wallpaper after using mixed solution with adhesive materials(PVC). And then to know the modified photo catalysts tested the reactivity and quantum efficiency in the mixed gas with NO as reactants in the photo catalytic reactor. In the gas phase, photo-catalytic activity of NO was the highest for modified P-25 catalysts(P-25(w)) that P-25(w) was impregnated by leached solution of wasted catalytic converter.

Photocatalytic Degradation of Trichloroethylene over Titanium Dioxides (이산화티탄에 의한 삼염화에틸렌의 광촉매 분해반응)

  • Lee, Yong-Doo;Ahn, Byung-Hyun;Lim, Kwon-Taek;Jung, Yeon-Tae;Lee, Gun-Dae;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1035-1040
    • /
    • 1999
  • Photocatalytic degradation of trichloroethylene has been carried out with UV-illuminated $TiO_2$-coated pyrex reactor in gas phase. Three commercial $TiO_2$ oxides were used as catalysts. The effect of reaction conditions, initial concentration of trichloroethylene, concentration of oxidant and light intensity on the photocatalytic activity were examined. Anatase-type catalyst showed higher activity than rutile-type, but P-25 catalyst showed the highest activity. The degradation rate increased with the decrease of flow rate and initial trichloroethylene concentration. It was preferable to use air as an oxidant. In addition, reactants with the water vapor decreased the activity and the degradation rate increased with the increase of light intensity, but it was very low with solar light. Photocatalytic deactivation was not observed at low concentration of trichloroethylene.

  • PDF

Effectiveness of the Sensor using Lead Dioxide Electrodes for the Electrochemical Oxygen Demand (전기화학적 산소요구량 측정용 이산화납 전극 센서의 유효성)

  • Kim, Hong-Won;Chung, Nam-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2012
  • The electrochemical oxygen demand (ECOD) is an additional sum parameter, which has not yet found the attention it deserves. It is defined as the oxygen equivalent of the charge consumed during an electrochemical oxidation of the solution. Only one company has yet developed an instrument to determine the ECOD. This instrument uses $PbO_2$-electrodes for the oxidation and has been successfully implemented in an automatic on-line monitor. A general problem of the ECOD determination is the high overpotential of electrochemical oxidations of most organic compounds at conventional electrodes. Here we present a new approach for the ECOD determination, which is based on the use of a solid composite electrodes with highly efficient electro-catalysts for the oxidation of a broad spectrum of different organic compounds. Lead dioxide as an anode material has found commercial application in processes such as the manufacture of sodium per chlorate and chromium regeneration where adsorbed hydroxyl radicals from the electro-oxidation of water are believed to serve as the oxidizing agent. The ECOD sensors based on the Au/$PbO_2$ electrode were operated at an optimized applied potential, +1.6 V vs. Ag/AgCl/sat. KCl, in 0.01 M $Na_2SO_4$ solution, and reduced the effect of interference ($Cl^-$ and $Fe^{2-}$) and an expended lifetime (more than 6 months). The ECOD sensors were installed in on-line auto-analyzers, and used to analyze real samples.

A Study on the Physical Properties of Durable Press Finished Rayon Fabrics (Durable Press 가공된 레이온직물의 물성변화에 관한 연구)

  • Kim Hee Sook;Kim Eun Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.3 s.25
    • /
    • pp.57-65
    • /
    • 1987
  • The purpose of this study was to investigate the optimum treatment [condition for the Durable press finish of viscose rayon fabrics. Three types of commercial N-methylol crosslinking agents were applied to the fabric utilizing the pad-dry-cure technique. Changes in physical properties were evaluated for the various resin and catalyst concentrations. For DMU, the effect of different catalysts, $MgCl_2$ and $NH_4Cl$, were also compared. DMU treated fabrics showed in crease recovery angle, tensile strength and tearing strength but drastic decrease in abrasion resistance. DMDHEU and MDMDHEU treated fabrics were similar in most physical properties. However, DMDHEU treated fabrics were better in crease recovery angle and stiffness, and MDMDHEU treated fabrics were better in tensile strength, tearing strength and abrasion resistance. For a given resin system, crease recovery angle, tensile strength and stiffness increased with a increase in resin concentration. Tearing strength showed very little change, while abrasion resistance was decreased significantly as the crease recovery angle was increased. For the treatment of DMU, $MgCl_2$ catalyst was much better than $NH_4Cl$ in all physical properties. When $NH_4Cl$ catalyst was used, strength reduction and discoloration were observed. As the catalyst concentration increased, crease recovery angle, stiffness were increased. Tensile strength and tearing strength were increcased than control but at high catalyst concentration, the strength were decreased and abrasion resistance was significantly lowered. DMDHEU and MDMDHEU were more sensitive to catalyst concentrations than DMU.

  • PDF

Preparation of Visible-light Responsive TiO2:Zr, N Photocatalysts by Polymer Complex Solution Method and Photo-degradation of NO (복합고분자용액법에 의한 가시광에 반응하는 TiO2:Zr, N 광촉매의 제조 및 NO 광분해 특성)

  • Choi, Jae-Young;Kim, Ji-Young;Cho, Young-Hyuek;Jang, Hee-Dong;Chang, Han-Kwon;Kim, Byoung-Gon;Kim, Tae-Oh
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.13-17
    • /
    • 2008
  • Visible-light responsive $TiO_2$:Zr, N powders were prepared by polymer complex solution method and the particle properties were characterized by using transmission electron microscope, BET method, X-ray diffractometer and UV-Vis spectrophotometer. The photocatalytic reactivity of the catalysts was also estimated by analyzing NO degradation. Polyhedral $TiO_2$ powder having about 20 um in the average particle diameter was successfully prepared, The XRD analysis revealed that the as-prepared powder consisted of anatase and rutile phases. The light absorption of the as-prepared $TiO_2$:Zr, N powder was shifted to the visible light. In addition, the as-prepared $TiO_2$:Zr, N nanoparticles showed the higher photocatalytic activity than the commercial $TiO_2$ under both UV and visible lights.

Cleaning Interval Selection for SCR Considering Endurance Reliability and Emissions Reduction Efficiency in Heavy Duty Commercial Engine (대형 상용 엔진에서 SCR의 클리닝 주기 선정 및 저감효율에 따른 내구신뢰성 특성 연구)

  • Shin, Jaesik;Kang, Jungho;Kim, Hyongjun
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • Purpose: Performance recovered from SCR through cleaning was studied, measuring differential pressure, NOx reduction efficiency, fuel consumption and engine power before and after cleaning. Ideal cleaning intervals are proposed based on SCR mileage and differential pressure. SCR endurance and reliability improvements through cleaning were studied through physicochemical testing of SCR durability at 43,000km 50,000km, and 110,000km respectively. Methods: Engine power, fuel consumption and exhaust gas were measured using engine full load tests and ND-13 MODE by installing the SCR before cleaned at total engine mileages of 400,000 km, 300,000km and 200,000km. The same tests were performed after cleaning the SCR catalytic converter. Endurance and reliability of the SCR cleaning was studied through the same test by SCR catalyst after each 43,000km 50,000km, 110,000km, durability test on SCR cleaning. Conclusion: We confirmed the low-performance of the SCR due to clogging is restored by SCR cleaning technology. The NOx reduction efficiency was restored to 82%, 86% and 88% from 69%, 72% and 79%. As well as the NOx reduction efficiency, it was confirmed that the engine power, fuel consumption and back pressure was restored to fresh SCR levels. As a result of the durability and reliability achieved through SCR cleaning, we confined the appearance and reduction efficiency through visual inspection and ND-13 MODE are similar to new SCR catalysts. Finally, it was judged that there was no change in performance even when driving the SCR without cleaning throughout the 100,000 km mileage warranty.

Comparison of Counter-Current Cooling and Pool Boiling System Through Modeling and Simulation of a Pilot-Scale Fixed bed Reactor for Dimethyl Ether(DME) Synthesis (Dimethyl Ether(DME) 합성을 위한 파일럿 규모의 고정층 반응기의 모델링과 모사를 통한 향류 냉각방식과 포화액체 풀비등 방식의 비교)

  • Song, Daesung;Go, Jae Wook;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.446-452
    • /
    • 2009
  • The behavior of a one-step fixed bed reactor which directly synthesizes dimethyl ether(DME) from Natural Gas was simulated. In the reactor, the prevention of the occurrence of hot spots which can cause deactivation of catalysts is pivotal, since methanol synthesis and dehydration reaction involved in the synthesis of DME are highly exothermic. Therefore, we simulated and compared performance of the reactor with counter-current cooling and pool boiling system that can be applied to a commercial plant. As a result, we found that counter-current cooling system is more effective in terms of CO conversion and DME productivity. However, pool boiling system can operate in a small temperature gradient that can decrease problems caused by hot spot. And, the system can operate in a safer range.

Synthesis of Magnetic Sonophotocatalyst and its Enhanced Biodegradability of Organophosphate Pesticide

  • Lirong, Meng;Jianjun, Shi;Ming, Zhao;Jie, He
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3521-3526
    • /
    • 2014
  • A magnetic sonophotocatalyst $Fe_3O_4@SiO_2@TiO_2$ is synthesized for the enhanced biodegradability of organophosphate pesticide. The as-prepared catalysts were characterized using different techniques, such as X-ray diffraction (XRD) and transmission electron microscopy (TEM). The radial sonophotocatalytic activity of $Fe_3O_4@SiO_2@TiO_2$ nanocomposite was investigated, in which commercial dichlorvos (DDVP) was chosen as an object. The degradation efficiency was evaluated in terms of chemical oxygen demand (COD) and enhancement of biodegradability. The effect of different factors, such as reaction time, pH, the added amount of catalyst on $COD_{Cr}$ removal efficiency were investigated. The average $COD_{Cr}$ removal efficiency reached 63.13% after 240 min in 12 L sonophotocatalytic reactor (catalyst $0.2gL^{-1}$, pH 7.3). The synergistic effect occurs in the combined sonolysis and photocatalysis which is proved by the significant improvement in $COD_{Cr}$ removal efficiency compared with that of solo photocatalysis. Under this experimental condition, the $BOD_5/COD_{Cr}$ ratio rose from 0.131 to 0.411, showing a remarkable improvement in biodegradability. These results showed that sonophotocatalysis may be applied as pre-treatment of pesticide wastewater, and then for biological treatment. The synthesized magnetic nanocomposite had good photocatalytic performance and stability, as when it was used for the fifth time, the $COD_{Cr}$ removal efficiency was still about 62.38%.