• Title/Summary/Keyword: Commercial CFD

Search Result 816, Processing Time 0.028 seconds

A Study on Flow Analysis and an Estimate of performance for HAWT by CFD (CFD에 의한 수평축 풍력발전용 터빈의 유동해석 및 성능예측에 관한 연구)

  • 김정환;김범석;김진구;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.906-913
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is to evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore. the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TU-Delft. The CFD results of which is somewhat consist with BEM results. under an error less than 10%.

BARAM: VIRTUAL WIND-TUNNEL SYSTEM FOR CFD SIMULATION (BARAM: 전산유체 해석을 위한 가상풍동 시스템)

  • Kim, Min Ah;Lee, Joong-Youn;Gu, Gibeom;Her, Young-Ju;Lee, Sehoon;Park, Soo Hyung;Kim, Kyu Hong;Cho, Kumwon
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.28-35
    • /
    • 2015
  • BARAM system that means 'wind' in Korean has been established as a virtual wind tunnel system for aircraft design. Its aim is to provide researchers with easy-to-use, production-level environment for all stages of CFD simulation. To cope with this goal an integrated environment with a set of CFD solvers is developed and coupled with an highly-efficient visualization software. BARAM has three improvements comparing with previous CFD simulation environments. First, it provides a new automatic mesh generation method for structured and unstructured grid. Second, it also provides real-time visualization for massive CFD data set. Third, it includes more high-fidelity CFD solvers than commercial solvers.

Rotor Blade Design of a 1MW Class HAWT and Evaluation of Aerodynamic Performance Using CFD Method (1MW급 수평축 풍력터빈 로터 블레이드 설계 및 CFD에 의한 공력성능 평가)

  • Mo, Jang-Oh;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • In this investigation, the aerodynamic performance evaluation of a 1MW class blade has been performed with the purpose of the verification of target output and its clear understanding of flow field using CFD commercial code, ANSYS FLUENT. Before making progress of CFD analysis the HERACLES V2.0 software based on blade element momentum theory was applied for confirmation of quick and approximate performance in the preliminary stage. The blade was designed to produce the target output of a 1MW class at a rated wind speed of 12m/s, which consists of five different airfoils such as FFA W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power by CFD is approximately 1.195MW, which is converted into the electrical power of 1.075MW if the system loss is considered to be 0.877.

Analysis of Resistance Performance for Various Trim Conditions on Container ship Using CFD (CFD를 이용한 컨테이너 선형의 트림별 저항성능 해석)

  • Seo, Dae-Won;Park, Hyun-Suk;Han, Ki-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • Vessels are traditionally optimized for a single condition, normally the contract speed at the design draft. The actual operating conditions quite often differ significantly. At other speed and draft combinations, adjusting the trim can often be used to reduce the hull resistance. Changing the trim is easily done by shifting ballast water. There are several ways to assess the effect of the trim on the hull resistance and fuel consumption, including in-service measurements, model tests, and CFD. In this paper, CFD is employed for the assessment of the resistance performance according to the trim conditions. The commercial CFD code of the STAR-CCM+ is utilized to evaluate the ship’s resistance performance on a 6,800 TEU container ship. To validate of the effectiveness of STAR-CCM+, the experimental result of the KCS hull form is compared with the result from STAR-CCM+. It is found that the total resistance of the 6,8000 TEU container ship was reduced by 2.6% in the case of a 1-m trim by head at 18knots.

CFD-Based Overpressure Evaluation Inside Expansion Chamber-Applied Protective Tunnels Subjected to Detonation of High Explosives (확장챔버를 적용한 방호터널 내부의 CFD 해석 기반 폭발압력 평가)

  • Shin, Jinwon;Pang, Seungki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.

Analysis of the Generation and Radiation of the Fan Noise by Using Commercial CFD Code (상용 CFD코드를 이용한 냉각홴 공력소음의 발생 및 방사 해석)

  • Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.13-19
    • /
    • 2002
  • In the present study, a numerical simulation is performed for the flow through a cooling fan. The computation was performed by using commercial code, STAR-CD. A rotating fan was simulated by rotational motions using MRF (Multiple Rotating Reference Frame) in a steady-state analysis and sliding interface (rotating meshes) in an unsteady-state analysis. The results of numerical computation were in good agreement with experimental data. In order to calculate the acoustic signal, the unsteady flow-field was firstly calculated. The acoustics of the fan is calculated by using acoustic analogy based on the unsteady flow-field. The predicted acoustic signal shows the characteristics of the uneven bladed-fan.

The Study on the Aeroacoustic Characteristics of an Axial Fan for an Air-Conditioner (공기조화기 축류팬의 공력소음 특성 연구)

  • Lee, Soo-Young;Han, Jae-Oh;Kim, Tae-Hun;Lee, Jai-Kwon;Jeon, Wan-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.205-208
    • /
    • 2006
  • This paper proposes a new computational aeroacoustics method for an axial fan analysis. The major aeroacoustic noise source of an outdoor air-conditioner is the axial fan. It was revealed that the dominant noise source is the aerodynamic interactions between the rotating blade and stationary orifice. Many researches were focused on the fan only case. However, it does not fit to a real outdoor unit of air-conditioner. Especially, the inlet part of the axial fan of real system case is complex and not uniform. So, in order to identify the dominant noise source of axial fan, full outdoor unit analysis is important. Transient CFD analysis of full system was performed by commercial CFD code - SC/Tetra. Dominant noise source of the system was calculated by commercial CFN code - FlowNoise. The results show that not only BPF peaks but also broadband noise are similar to the measured data.

  • PDF

A Study on the Flow Characteristic of the Diesel Engine DPF (디젤엔진용 매연여과장치 내부유동 특성 연구)

  • Go, Hyun-Sun;Jung, Chan-Gyu;Lee, Heang-Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This paper addresses influence on the flow field by varying the length of DPF Inlet pipe in 5 ways. Numerical analysis is carried out by using PIV and commercial code and as a result, PIV and commercial code shows correlation correspond to 87%. Furthermore, in the same velocity condition, as stable and high pressure value is shown when the Inlet pipe length is 20mm, particulate filtering rate can be increased.

Numerical Modeling of Floating Electrodes in a Plasma Processing System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.102-110
    • /
    • 2015
  • Fluid model based numerical analysis is done to simulate a plasma processing system with electrodes at floating potential. $V_f$ is a function of electron temperature, electron mass and ion mass. Commercial plasma fluid simulation softwares do not provide options for floating electrode boundary value condition. We developed a user subroutine in CFD-ACE+ and compared four different cases: grounded, dielectric, zero normal electric field and floating electric potential for a 2D-CCP (capacitively coupled plasma) with a ring electrode.

Setting the scene: CFD and symposium overview

  • Murakami, Shuzo
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.83-88
    • /
    • 2002
  • The present situation of CWE(Computational Wind Engineering) and the papers presented to the CWE 2000 Symposium are reviewed from the following viewpoints; 1) topics treated, 2) utilization of commercial code (software), 3) incompleteness of CWE, 4) remaining research subjects, 5) prediction accuracy, 6) new fields of CWE application, etc. Firstly, new tendencies within CWE applications are indicated. Next, the over-attention being given to the application field and the lack of attention to fundamental problems, including prediction error analysis, are pointed out. Lastly, the future trends of CFD (Computational Fluid Dynamics) applications to wind engineering design are discussed.