• Title/Summary/Keyword: Command&Control

Search Result 1,396, Processing Time 0.035 seconds

A Study on Translational Motion Control in Integrated Control System for Ship Steering Motion (선박 조종운동을 위한 통합제어시스템에서의 이동운동제어에 관한 연구)

  • Woo, Ju-Eun;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.32-44
    • /
    • 2015
  • In general, a series of ship steering motion is represented by the combination of translational motion and rotational motion of the ship. Especially, special-functioned ships such as large-scale cruises, ships for installing underwater optical cable, and diver ships must be able to reveal only a translational motion without the change of orientation. In this paper, a method to comprise an integrated control system based on the joystick as a command instrument for translational motion control is suggested. In order to realize the translational motion control system, several algorithms are suggested including the velocity command generation, the selection of motional variables, and the generation and tracking of reference inputs for the selected motional variables. A simulation bench is composed to execute simulations for several translational motion commands. At last, the effectiveness of the proposed method is verified by analyzing the simulation results.

Trajectory Control of Excavator Actuators Using IMV (IMV를 이용한 굴착기 작업장치 궤적제어)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.45-54
    • /
    • 2020
  • The IMV is a combination of four two-way valve systems which replace a conventional four-way spool valve to improve efficiency mostly in excavator hydraulics. As the environmental regulations for construction equipment have tightened, some overseas advanced companies have released commercial excavators in which the MCV is implemented with the IMVs. Development of the IMV type MCV relies on the control algorithm as well as the robust performance of proportional flow control valves. In this study, the IMV controller was designed and verified with experiments for the excavator working unit, which determines the IMV mode of operation and the extent of the valve opening in consideration of the load conditions on hydraulic actuators. First, the open-loop controller was designed with a joystick command vs. a PSV reference current map comprising several control parameters in to compensate for the different flow characteristics and non-linearities of two-way flow control valves. Second, the closed-loop controller was designed with the PI control fed by the actuator displacement and outputs actuator percent effort equivalent to the operator's joystick command. Finally, the performance of the IMV type MCV was verified with the trajectory control of position references derived from the energy consumption test standard. Experimental results showed the control performance of the IMV developed in this study, and suggest that future studies to be conducted to advance technical progress.

Efficiency Optimization Control of IPMSM drive using SC-FNPI Controller (SC-FNPI 제어기를 이용한 IPMSM 드라이브의 효율최적화 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.9-20
    • /
    • 2012
  • This paper proposes the efficiency optimization control of interior permanent magnet synchronous motor(IPMSM) drive using series connected-fuzzy neural network PI(SC-FNPI) controller. The PI controller is generally used to control IPMSM drive in industrial field. However, the PI controller has problem which is falling control performance about parameter variation such as command speed, load torque and inertia due to fixed gain of PI controller. Therefore, to improve performance of PI controller, this paper proposes SC-FNPI controller adjusted input of PI controller by FNN controller according to operating conditions. Also, this paper proposes efficiency optimization control which is improving efficiency with minimize loss. The SC-FNPI controller proposed in this paper is compared control performance with conventional FNN and PI controller about command speed, load torque and inertia variation. And the efficiency optimization control is compared with $i_d=0$ control about loss and efficiency. The SC-FNPI controller proposed in this paper shows more excellent control performance for rising time, overshoot and steady-state error. Also efficiency optimization control is increased efficiency by reducing loss.

Tip Position Command Tracking of a Flexible Beam Using Active Vibration Control (능동진동제어를 이용한 유연보의 끝단위치 명령추종연구)

  • Lee, Young-Sup;Elliott, Stephen-J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.643-648
    • /
    • 2003
  • The problem considered in this paper is that the tip position of a flexible cantilever beam is controlled to follow a command signal, using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. The IMC controller designed fur the beam was found to have very much reduced settling times to a step input compared with those of the PID controller.

  • PDF

The Tactical review of the Battle of Tsushima - with focus on disposition & maneuver, and damage control - (쓰시마 해전의 전술적 재조명 - 배진과 기동, 손상통제를 중심으로 -)

  • Lee, Chang Hyun
    • Strategy21
    • /
    • s.44
    • /
    • pp.213-253
    • /
    • 2018
  • The Russo-Japanese War(1904-1905) in the early 20th century greatly influenced the international politics in Northeast Asia and the destiny of both countries. There are many studies on the cause of the outbreak and its effect on the Korean peninsula. The victory and defeat of the battle of Tsushima also the subject of research by renowned scholars and navy officers. Many previous studies have analyzed the process of engagement. However, There was a lack of research that analyzed at the tactical level of naval commanders. Therefore, this study tries to review the battle of Tsushima in terms of tactical level, that is formation, maneuvering, damage control. Naval operations at sea with many variables are not always done as planned. The intuitive judgement and readiness have had a decisive impact on victory and defeat. The analysis of the naval warfare on the basis of formation, maneuvering, and damage control makes the cause of the win more clearly. The conclusion of the this study can be summarized in five ways. First, victory would be achieved through the suppression of the beginning. The destiny of the Tsushima battle was determined by an 1 hour after first firing. The Japanese fleet caught fire by paralyzing the command and control capabilities of the Russian fleet. Second, the Japanese fleet's power was superior to the Russian fleet. In general, Japan and Russia had similar powers, and Admiral Togo's "T crossing tactics" decisively contributed the victory. However, when compared to the weapon system level, formation and maneuvering, Japan was much more dominant. Third, people realized that one side to be annihilated in the battle between similar powers after the Tsushima battle. The common perception before the Battle of Tsushima was that the battle ship would not sunken, and that the result of wiping out was difficult. However, there is s time for one sided victory and defeat depending on the early suppression nad the destruction of the command and control ability. Fourth, it is the importance of damage control ability. The main cause of the Russian fleet's loss of command and control ability was thick smoke from fire, and maneuverability was greatly deteriorated due to coal overload. In this way, importance is still valid after more than 100 tears. Fifth, the area of uncertainty. In the navy battles, one or two shots of clear firing in the beginning and small misconception and minor mistakes decide win or loss. Ultimately, this area of fortune can be linked to mindset of the commander. I hope this research will be help to naval researchers and naval commanders at the sea.

Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command (분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법)

  • Bae, Dongseog;Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Cooperative Guidance Law for Multiple Near Space Interceptors with Impact Time Control

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • We propose a novel cooperative guidance law design method based on the finite time disturbance observer (FTDO) for multiple near space interceptors (NSIs) with impact time control. Initially, we construct a cooperative guidance model with head pursuit, and employ the FTDO to estimate the system disturbance caused by target maneuvering. We subsequently separate the cooperative guidance process into two stages, and develop the normal acceleration command based on the super-twisting algorithm (STA) and disturbance estimated value, to ensure the convergence of the relative distance. Then, we also design the acceleration command along the line-of-sight (LOS), based on the nonsingular fast terminal sliding mode (NFTSM) control, to ensure that all the NSIs simultaneously hit the target. Furthermore, we prove the stability of the closed-loop guidance system, based on the Lyapunov theory. Finally, our simulation results of a three-to-one interception scenario show that the proposed cooperative guidance scheme makes all the NSIs hit the target at the same time.

Intelligent Machine Control by Recognition of Literal Commands (문자의 인식을 통한 지능형 머신제어)

  • 박상혁;김종원;조현찬;윤희현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.75-78
    • /
    • 2004
  • In this paper, we suggest machine control method by the Recognition of Literal Commands. This method that we design is human friendly interface to be able to command easy We distinguish words that is related to command directly or not in the Literal Commands. And vague expressions to move machine directly make behaviors by intelligent recognition model. We suggest The Literal Commands control method that is able to obtain more realistic output equivalent to users' desire throgh the literary style commands. The proposed method is experimentally tested by a mobile car using bluetooth module and mobile phone in real time using Literal language commands.

  • PDF

Model-based Reference Trajectory Generation for Tip-based Learning Controller

  • Rhim Sungsoo;Lee Soon-Geul;Lim Tae Gyoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.357-363
    • /
    • 2005
  • The non-minimum phase characteristic of a flexible manipulator makes tracking control of its tip difficult. The level of the tip tracking performance of a flexible manipulator is significantly affected by the characteristics of the tip reference trajectory as well as the characteristics of the flexible manipulator system. This paper addresses the question of how to best specify a reference trajectory for the tip of a flexible manipulator to follow in order to achieve the objectives of reducing : tip tracking error, residual tip vibration, and the required actuation effort at the manipulator joint. A novel method of tip-based learning controller for the flexible manipulator system is proposed in the paper, where a model of the flexible manipulator system with a command shaping filter is used to generate a smooth and realizable tip reference trajectory for a tip-based learning controller.

UAV Formation Wight Control Law Utilizing Energy Maneuverability

  • Choi, Jong-Ug;Kim, You-Dan;Moon, Gwan-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.31-41
    • /
    • 2008
  • This paper deals with the energy saving problem of the follower aircraft in the loose leader-follower formation geometry in which the lateral separation between formation members is more than a wingspan of the leader aircraft. This formation geometry offers no drag benefit, but has a strategic advantage. In the case of loose formation flight, the follower aircraft usually consumes more energy than the leader aircraft because the follower aircraft should use more thrust to maintain given formation geometry, especially during the turning phase from the outside of the leader"s flight path or join-up phase. A formation control scheme based on the energy maneuverability is proposed in this paper. To design the proposed control law, the velocity command is designed using feedback linearization for the horizontal formation geometry and then coverts it to the altitude command using the energy equation. Numerical simulation is performed to verify the effectiveness of the proposed controller.