• Title/Summary/Keyword: Comfort Conditions

Search Result 449, Processing Time 0.025 seconds

A Study on the Evaluation Methods of Indoor Thermal Comfort Index in Building (실내(室內) 온열환경지표(溫熱環境指標)의 평가방법에 관한 연구)

  • Jeong, Chang-Won;Horikoshi, Tetsumi;Yoon, In;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.11-21
    • /
    • 1999
  • This objective of this paper is to investigate the evaluation and indiction of human thermal comfort in building environment. The issue of defining the boundaries of acceptable thermal comfort conditions in buildings and urban may have significant implication for building design and also may have urban design by climate considerations. And then it is to apply the thermal comfort condition to environmental design by using passive methods in Korea. Since 1920. architects have conducted studies to measure thermal comfort in houses under hot and humid conditions, while industrial hygienists have studied the effects of temperature and humidity on the performance of factory workers. Thermal comfort can be influenced by many variables. This paper conducted to review the previous researches and the human heat balance equation, and to analyse in order to reveal the meaning and usage of the thermal comfort index in two traditional essays, Fanger's PMV and Gagge's ET* Their comfort indexes compared with each other. They were based on human heat balance equation and psychological and physiological responses in the laboratory tests. The researchers and the architectural engineers using thermal comfort index shall be careful in decided the use of indexes and be necessary to recognize the value concept of the design criteria for thermal comfort. Therefore, The opinion of the authors is that different comfort standards have to apply for each building and urban with different climatic conditions.

  • PDF

Psychological and Physiological Responses of Occupants Caused by Types of Seat Air Conditioning (좌석시트 공조조건에 따른 착석자의 심리 및 생리적 반응)

  • Kim, Boseong;Kwak, Seung Hyun;Seo, Sang Hyeok;Min, Byung Chan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.14-20
    • /
    • 2015
  • It is important to understand psychological and physiological responses of occupants who seated in a chair in order to shape a comfortable indoor official environment. So it is needed to find out optimal seated conditions. The purpose of this study was to explore optimal condition of seat air conditioning control based on psychological or subjective responses (perceived temperature and comfort sensation) and physiological responses (heartrate variability; HRV). To do this, experimental conditions were designed by the difference of indoor temperature and seat air conditioning temperature. In the experiment 1, seven experimental conditions were designed with one control condition which was not used seat air conditioning system, and six experimental conditions which the difference of indoor temperature and seat air conditioning temperature ($-1^{\circ}C{\sim}-6^{\circ}C$). In the experiment 2, four experimental conditions were designed with one control condition and three experimental conditions ($-3^{\circ}C{\sim}-5^{\circ}C$). In addition, participants' psychological or subjective response was measured by CSV (comfort sensation vote) and PTS (perceived temperature sensitivity) as a psychological or subjective response, and heartrate variability was measured as a physiological response. As a result, in the experiment 1, it was reported that the optimal conditions of seat air conditioning control based on participants' psychological or subjective comfort were from $-3^{\circ}C$ to $-5^{\circ}C$ experimental conditions. In addition, in the experiment 2, it was reported that the optimal condition of seat air conditioning control based on participants' physiological comfort was $-4^{\circ}C$ experimental condition. These results suggested that seat air conditioning could affected to comfort sensation of occupants in an appropriate range, rather than unconditionally.

Discussion of the ride comfort for Korean high speed train according to the operational conditions (운행조건에 따른 한국형 고속열차의 승차감에 관한 고찰)

  • Kim, Young-Guk;Kim, Seog-Won;Mok, Jin-Yong;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.686-691
    • /
    • 2007
  • The ride comfort is more important according to train speedup. Generally it is defined as the vehicle vibration. There are many studies on evaluation method of ride comfort for railway. In the case of Korean high speed train(HSR 350x), the ride comfort has been assessed by statistical method according to UIC 513R. To verify the design requirements for the performance of HSR 350x, the qualification tests had been conducted from August 19, 2002 to December 2004 and the stabilization and reliability tests are carried out nowadays. Up to December 2006, total test runs and the accumulated milage of the train were 357 times and 164,000km, respectively. A total of 352 ride indices had been acquired through the on-line test from Aug. 2002 to Dec. 2006. In this paper, we have reviewed the characteristics of ride comfort for HSR 350x according to the operational conditions, such as load and track conditions, season and used time, by using the tests data.

  • PDF

Comparative Study on Ride Comfort and Optimum Horizontal Curve Conditions for Superimposition of Vertical and Horizontal Curve (종곡선/평면곡선 경합여부에 따른 최적평면선형조건 및 승차감 비교 분석)

  • Um, Ju-Hwan;Choi, Il-Yoon;Yang, Sin-Chu;Lee, Il-Hwa;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.589-594
    • /
    • 2010
  • Superimposition of horizontal and vertical curves may hamper the ride comfort and running stability of train and largely affect the maintenance costs. However, in many cases, it is not easy to make a track alignment plan because of the geographic conditions or undesirable environmental factors. In this paper, a comparative study on the effect of superimposition of vertical and horizontal curve on the ride comfort and optimum horizontal curve conditions was performed. That is, optimal cant and ride comfort analysis with and without a vertical curve superimposed on the horizontal curve were evaluated. Also the superimposition effect on ride comfort and alignment conditions in high speed zone were evaluated. From the analysis results, it was found that the ride comfort is similar to that at the only horizontal curves when applying the compensation cant for the superimposed site.

Cognitive Effects on Lighting Environment for Improvement of Spatial Satisfaction and Psychological Comfort (공간 만족도 및 심리적 편안감 향상을 위한 실내 조명환경에 대한 인지효과)

  • Rim, Min-Yeop;Lee, Ji-Hyun;Kim, Soo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.497-508
    • /
    • 2012
  • Occupants' visual perception, psychological responses and spatial satisfaction under various indoor lighting environments were analyzed in this study. Field measurements and surveys were conducted in four coffeeshop space where different lighting conditions were used. Results imply that worse visual comfort was reported under direct lighting conditions that exposed light sources to occupants. To improve spatial satisfaction in space, lighting environments should lessen visual thresholds and distraction. Also, necessary illuminance levels should be kept with appropriate color of light that occupants prefer. Worse spatial satisfaction was reported under direct lighting environments, and spatial satisfaction was strongly relevant to visual comfort. Psychological comfort for space was positive in space where visual thresholds were minimized and visual comfort was positively evaluated. Psychological and spatial satisfaction was relevant each other. Occupants preferred to stay longer in space where psychological and spatial satisfaction was positively achieved due to less visual thresholds and improved visual comfort. Better psychological and spatial satisfaction was achieved in space where temporary mood and visual perception were favorably evaluated under indirect lighting environments.

Analysis of Thermal Sensation and Wearing Comfort before and after Bikram Yoga Activity

  • Lee, Hyojeong;Jin, Heejae;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.5
    • /
    • pp.810-823
    • /
    • 2020
  • This study evaluated the effect of functional characteristics of the fabric for Bikram yoga clothing and fit measured in clothing pressure on the wearer's physiological response and perceptive sensation before and after exercise in hot conditions and during a resting period in standard conditions. The test garment consisted of two tops (T1, T2) and two pants (P1, P2) each with different functional characteristics of fabric. Using various combinations of the test garments, assessment of the thermal sensation and comfort was performed before/after yoga and after resting. This study revealed that thermal sensation and wearing comfort significantly changed based on the functionality of the fabric of top garment before the exercise period. In addition, the results showed that based on clothing pressure, the feeling of comfort was different between before yoga and after resting. The appropriate choice of fabric material was important when constructing Bikram yoga clothing worn in hot conditions; however, level of clothing pressure was also found to be an essential design factor for comfort during rest after exercise.

A Seasonal Indoor Thermal Conditions of a Newly-launched Training Ship

  • Hwang, Kwang-Il;Shin, Dong-Keol;Lee, Jin-Uk;Lee, Sang-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.4
    • /
    • pp.289-294
    • /
    • 2009
  • The living performances of crews and passengers in cabins have been less received attention, while Korea is a top leading country in ship building industry. To develop a high value added ships like 5-star cruisers, researches on the comfort and productivity in cabins should be carried out with urgent. The purpose of this study is to measure and analyze of the ship's indoor thermal conditions in spring, summer and winter, and also to compare the seasonal differences, of which conditions are supplied from and controlled by marine HVAC The temperature, humidity and air supply volume of 5 different needs of cabins on a training ship were measured through a year, which was launched at Dec. 2005 and totally 246 crews can go on board for education. The following results were obtained: (1)In the spring, the temperature in cabins was measured as $20{\sim}25^{\circ}C$ and humidity was below 30%. (2)In the summer, the temperatures was controlled at $21{\sim}27^{\circ}C$ in almost cabins and humidity was between $40{\sim}60%$ which is known as comfort conditions. (3)In the winter, temperature and humidity was maintained between $19{\sim}26^{\circ}C$, and humidity was between $10{\sim}50%$. (4)It is clear that the humidity conditions in cabins are not properly controlled at all through a year to satisfy the Comfort Standards provided by ASHRAE and/or ISO, In conclusion, humidification and dehumidification of cabins must be treated with importance for more comfort living and working environments for crews and passengers.

Analysis of optimal activities according to thermal comfort in the forest: focusing on a program for the elderly at the National Forest Therapy Center

  • Tae-Gyu Khil;Ah-Young Jung;Kun-Woo Park;Yang-Soon Oh;Beom Lee;Dawou Joung;Hyelim Lee;Bum-Jin Park
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.663-673
    • /
    • 2023
  • The purpose of this study was to scientifically activate the forest healing program activities for the elderly. The predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD), which are indices of thermal comfort in the thermal environment, and degree of canopy closure were compared and analyzed. Based on this information, the study objective was to present the appropriate conditions for maintaining the best comfort for the elderly. Six deck road shelters, which are the most active locations in forest healing programs among the National Center for Forest Therapy, were selected as the study sites. The results indicated that in the case of the conditions of 1 clo (clothing insulation value) and 1 met (metabolic rate) at an air temperature of 19 to 21 degrees in September on the measurement date, the PMV values ranged between -1.85 and -0.98 at all sites, and PPD values ranged between 25.60% and 68.68%. On the other hand, in the case of 1.3 clo and 1.6 met conditions, the PMV values ranged between -0.08 and 0.23 for all sites and PPD values ranged between 5.40 and 6.18. As shown above, the difference in thermal environment comfort and satisfaction according to the condition of the amount of metabolism and the amount of clothing could be confirmed. In addition, an analysis of the relation between PPD and canopy closure suggested a significantly positive correlation between them, and it was found that canopy closure was a factor affecting thermal comfort. Studies on effects of forest thermal environmental comfort and canopy closure on forest healing program areas should be conducted extensively according to seasonal conditions to provide information that can be used for more effective forest healing programs.

Evaluation of Thermal Comfort during Sleeping in Summer - Part IV : Study on Indoor Temperature Conditions for Comfort Sleep - (여름철 수면시 온열쾌적감 평가 - 제4보 : 쾌적수면을 위한 실내온도 설정에 관한 연구 -)

  • Kum, Jong-Soo;Kim, Dong-Gyu;Park, Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.307-312
    • /
    • 2007
  • This study was performed to evaluate sleep efficiencies and conditions for comfortable sleep based on the analysis of sleep efficiency and MST under four thermals conditions ($22^{\circ}C,\;24^{\circ}C,\;26^{\circ}C,\;30^{\circ}C$). Five female subjects who have similar life cycle and sleep patterns were participated for the sleep experiment. Their age was from 20 to 22 years old. They were healthy, and had regular sleep with consistent bed and wakeup time. It was checked whether they had a good sleep before the night of experiment. Experiments were performed in an environmental chamber using thermo-hygrostat. The physiological signal (EEG) for sleep stage were obtained from C3-A2 and C4-Al electrode sites. Sleep stages were classified, then SWS latency and SWS/TST were calculated for the evaluation for sleep efficiencies on thermal conditions. As results, mean skin temperature for comfort sleeping was $34.5{\sim}35.4^{\circ}C$. Considering sleep efficiency and mean skin temperature, indoor room temperature of upper limit was $28.1^{\circ}C$.

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • v.25 no.4
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.