• Title/Summary/Keyword: Combustor sizing

Search Result 5, Processing Time 0.021 seconds

Preliminary Design Program Development for Gas Turbine Combustor (가스터빈 연소기 기본 설계 프로그램 개발)

  • Kim, Daesik;Kim, Jinah;Jin, You In
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.27-34
    • /
    • 2015
  • The objective of the current study is to introduce detailed process for a preliminary combustor design, and to develop a computer code for it. The program includes various empirical and semi-empirical methodologies for diffuser deign, combustor sizing, air distribution, and sub-component design such as primary and secondary zones. Using the developed program, the combustor sizing results are shown from an assumption of simple annual combustor cycle analysis. Two options are employed, 1) pressure loss approach, and 2) velocity assumption approach. Design results show that there are no significant differences in combustor sizing between two design options. Further code improvement is required for performance and emission evaluations of the designed combustor.

Preliminary Design Program Development for Aircraft Gas Turbine Combustors : Part 1 - Combustor Sizing (항공용 가스터빈 연소기 기본 설계 프로그램 개발 : Part 1 - 연소기 크기 결정)

  • Kim, Daesik;Ryu, Gyong Won;Hwang, Ki Young;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.54-60
    • /
    • 2013
  • This paper shows a general development process for aircraft gas turbine combustors. As a first step for developing the preliminary combustor design program, several combustor sizing methodologies using reference area concepts are reviewed. There are three ways to determine the reference area; 1) combustion efficiency approach, 2) pressure loss approach, 3) velocity assumption approach. The current study shows the comparisons of the calculated results of combustor reference values from the pressure loss and velocity assumption approaches. Further works are required to add iterative steps in the program using more reasonable values of pressure loss and velocities, and to evaluate the sizing results using data for actual combustor performance and sizes.

Review on the Gas Turbine Combustor Sizing Methodologies using Fuel Atomization and Evaporation Characteristics (연료의 미립화 및 증발 특성 데이터를 이용한 가스터빈 연소기 사이징 기법 고찰)

  • Kim, D.;Jin, Y.I.;Hwang, K.Y.;Min, S.K.
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.101-108
    • /
    • 2014
  • The current paper reviews the main characteristics and the operating principles of major fuel atomizers used for gas turbine combustors, including various empirical SMD equations for each atomizers. We have summarized various methodologies for evaluation of the combustion efficiency and for combustor sizing from the selected SMD data. It is found that the combustor sizing as well as the combustion efficiency are totally dependent upon the SMD calculation results, which means that special cares should be taken in choosing the SMD empirical equations.

The Catalytic Combustor for Gas Turbines (가스터빈 촉매연소기의 개발 현황)

  • Lee, Dong-Hun;Lee, Kang-Yeop;Choi, Seong-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.265-272
    • /
    • 2003
  • Some catalytic reactors for industrial/generation gas turbines were reviewed and investigated to understand the current status and future prospect for ultra low NOx catalytic gas turbine combustor. Catalytic reactor which was applied to 1${\sim}$10MW class gas turbine has achieved the ultra low emission corresponding to less than 3ppm NOx and 10ppm CO. But the durability and sizing flexibility of catalyst is needed to improve the catalyst performance for commercial gas turbine operation.

  • PDF

An Experimental Study on the Characteristics of Gas Burner Nozzle (가스버너의 노즐특성에 관한 실험적 연구)

  • Chung, D.H.;Kim, W.B.;Dong, S.K.
    • 한국연소학회:학술대회논문집
    • /
    • 1995.06a
    • /
    • pp.105-121
    • /
    • 1995
  • The objective of this study is to find out the design data for gas burner with an axal and radial type nozzles. The design parameters are chosen as the stabilizer type, the jet hole size of gas nozzle, the distance between gas nozzle and stabilizer, the size of stabilizer and the hole size of stabilizer, the stabilizer type with or without air swirler, the angle of swirler. For the experimental test combustor sizing ${\phi}1.3m{\times}L4.5m$ is designed and manufactured, in which the set up of power diagram, the exhaust gas analysis, blow-off test, the flame temperature and the direct photography are performed.

  • PDF