• Title/Summary/Keyword: Combustor Atmospheric Pressure

Search Result 32, Processing Time 0.026 seconds

Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions (21AFR 희박연료모듈의 저압 및 고압 연소성능시험)

  • Han, Yeoung-Min;Ko, Young-Sung;Yang, Soo-Seok;Lee, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1132-1137
    • /
    • 2002
  • In this paper, the test results of the combustion for 2 IAFR lean fuel models are described. The need for the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of newly designed 21AFR lean modules, the hydraulic tests in stereolithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a result of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1 The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

Effect of System Configuration on Design Performance of Atmospheric Pressure MCFC/Gas Turbine Hybrid Systems (상압형 MCFC/가스터빈 하이브리드 시스템의 구성방법에 따른 설계성능 분석)

  • Oh Kyong Sok;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1021-1027
    • /
    • 2004
  • Design performances of various configurations of hybrid systems combining an atmospheric pressure molten carbonate fuel cell and a gas turbine have been analyzed. Two different fuel reforming methods (internal and external reforming) were considered. Influences of turbine inflow heating method, location of fuel combustor and associated component arrangements were investigated. In general, internal reforming leads to higher system efficiencies. The optimum design pressure ratio varies among different system configurations. In particular, the design point selection is closely related to the allowable turbine inlet temperature. Configurations with direct heating of turbine inlet flow may realize both higher efficiency and higher specific power than those with indirect heating.

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Lee, Jong-Ho;Kim, Dae-Hyun;Jeon, Hung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.425-432
    • /
    • 2004
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence(OH$\^$*/) image and its Abel inverted image to investigate the flame structure at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure and NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ∼341.8㎐, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between OH$\^$*/ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.356-361
    • /
    • 2003
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence ($OH{\ast}$) image and its Abel inversion image at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure. Also NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ${\sim}341.8$ Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between $OH{\ast}$ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.

  • PDF

Performance Design Analysis of Hybrid Systems Combining Atmospheric Pressure Molten Carbonate Fuel Cell and Gas Turbine (상압 용융탄산염 연료전지와 가스터빈을 결합한 하이브리드 시스템의 성능설계 해석)

  • Jeong, Young-Hyun;Kim, Tong-Soep
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1361-1369
    • /
    • 2003
  • Design performance of hybrid power generation systems, comprised of a gas turbine and an atmospheric pressure molten carbonate fuel cell, has been analyzed. Two different configurations were analyzed and performances were compared. A reference calculation was performed for the design condition of a system under development and simulated results agreed well with the published data. Performances were analyzed in terms of main design parameters including turbine inlet temperature, operating temperature of the fuel cell and pressure ratio. Also examined were the effects of fuel utilization factor and heat exchanger effectiveness. It was found that the relationship between the turbine inlet temperature and the fuel cell temperature should be critically examined to evaluate achievable design performance. Considering current state of the art technologies, a system with the combustor located before the turbine could achieve higher efficiency and specific power than the other system with the combustor located after the turbine.

Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (I) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature- (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (I) -연료/공기 혼합정도가 위상별 온도에 미치는 영향-)

  • Lee Jong Ho;Jeon Chung Hwan;Park Chul Woong;Hahn Jae Won;Chang Young June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1184-1192
    • /
    • 2004
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane gas. The objective of this study was to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs gave an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature gave an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor (모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구)

  • Lee, Youn-Joo;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF

Phase-resolved CARS Temperature Measurements in a Lean Premixed Gas Turbine Combustor;Effect of fuel/air mixing on phase-resolved gas temperature (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정(1);연료/공기 혼합정도가 위상별 온도에 미치는 영향)

  • Moon, Gun-Feel;Lee, Jong-Ho;Park, Chul-Woong;Hahn, Jae-Won;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.97-102
    • /
    • 2003
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on natural gas. The objective of this study is to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs give an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature give an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

  • PDF

Effects of Fuel-Air Unmixedness on Lean Premixed Combustion Characteristics (연료-공기 비혼합도가 희박예혼합 연소 특성에 미치는 영향)

  • Kim, Dae-Hyun;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.133-139
    • /
    • 2002
  • The lean premixed technique has been proven very efficient in reducing NOx emissions from gas turbine combustors. However combustion instability is susceptible to occur in lean premixed combustor. So laboratory-scale dump combustor was used to understanding the underlying mechanisms causing combustion instabilities. In this study, tests were conducted at atmospheric pressure and inlet air was up to $360^{\circ}C$ with natural gas. The observed instability was a longitudinal mode with a frequency of ${\sim}341.8Hz$. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various equivalence ratio. Combustion instability was observed to occur at higher value of equivalence ratio(>0.69). This study was performed to investigate the effects of equivalence ratio and fuel split measuring NOx and acoustic wave. The results reveal the effect of fuel-air unmixedness on lean premixed combustor.

  • PDF

Experimental Study on Flame Structure and Temperature Characteristics in a Lean Premixed Model Gas Turbine Combustor

  • Lee Jong Ho;Jeon Chung Hwan;Chang Young June;Park Chul Woong;Hahn Jae Won
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1366-1377
    • /
    • 2005
  • Experimental study was carried out in an atmospheric pressure, laboratory-scale dump combustor showing features of combustion instabilities. Flame structure and heat release rates were obtained from OH emission spectroscopy. Qualitative comparisons were made between line-integrated OH chemiluminescence image and Abel-transformed one. Local Rayleigh index distributions were also examined. Mean temperature, normalized standard deviation and temperature fluctuations were measured by coherent anti-Stokes Raman spectroscopy (CARS). To see the periodic behavior of oscillating flames, phase-resolved measurements were performed with respect to the pressure wave in the combustor. Results on system damping and driving characteristics were provided as a function of equivalence ratio. It also could be observed that phase resolved temperatures have been changed in a well-defined manner, while its difference between maximum and minimum reached up to 280K. These results would be expected to play an important role in better understanding of driving mechanisms and thermo-acoustic interactions.