• Title/Summary/Keyword: Combustor

Search Result 1,309, Processing Time 0.023 seconds

Research and Development Trend of Gas Turbine Combustor in Korea (한국의 가스터빈엔진 연소기 연구개발 동향)

  • Choi, Seongman
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.287-289
    • /
    • 2012
  • The research and development history of the gas turbine combustor in Korea is introduced briefly. It is very important to understand the fuel spray, mixing phenomena in achieving combustion performance. In this paper, two kinds of fuel injection system such as duplex fuel injector and rotary spray system are introduced in developing gas turbine combustor in Korea. The extensive experimental research of fuel spray, ignition, performance and endurance rig test makes gas turbine combustor successfully in Korea.

  • PDF

The Influence of Combustor Atmospheric Pressure on Flame Characteristics (연소실 분위기 압력이 화염형상에 미치는 영향)

  • Kim, J.R.;Choi, G.M.;Kim, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1134-1139
    • /
    • 2004
  • Recently, development of flame control scheme has been hot issues in the combustion engineering. It has been held that flame shape can be controllable by pressure inside combustor. The influence of combustor atmospheric pressure on flame shape was investigated in the present study. The flame shape, flammable limit, flame temperature and nitric oxide emission were measured as functions of combustor atmospheric pressure and equivalence ratio. The reaction region became longer and wider with decreasing combustor atmospheric pressure by direct photography, hence reduction of blow off limit. This tendency was also observed in the mean flame temperature distribution. Nitric oxide emission decreased with decreasing combustor atmospheric pressure. Low NOx combustion is ascribed to wide-spread reaction region in the low atmospheric pressure condition. These results demonstrate that flame shape and nitric oxide emission can be controllable with combustor atmospheric pressure.

  • PDF

Studies on Surface and Gas Reactions in a Catalytically Stabilized Combustor (촉매연소가 지원된 연소기에서의 표면반응과 가스반응에 관한 연구)

  • Seo, Yong-Seog;Yu, Sang-Phil;Jeong, Nam-Jo;Lee, Seung-Jae;Song, Kwang-Sup;Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.287-298
    • /
    • 2003
  • A numerical investigation of a catalytically stabilized thermal (CST) combustor was conducted for a multi-channel catalyst bed, and both the catalyst bed and thermal combustor were simultaneously modeled. The numerical model handled the coupling of the surface and gas reaction in the catalyst bed as well as the gas reaction in the thermal combustor. The behavior of the catalyst bed was investigated at a variety of operating conditions, and location of the flame in the CST combustor was investigated via an analysis of the distribution of CO concentration. Through parametric analyses of the flame position, it was possible to derive a criterion to determine whether the flame is present in the catalyst bed or the thermal combustor for a given inlet condition. The results showed that the maximum inlet temperature at which the flame is located in the thermal combustor increased with increasing inlet velocity.

  • PDF

The Flame Characteristics of Annular Combustor for Gas Turbine according to Combustor Length Ratio (가스터빈용 환형연소기의 연소실 길이비에 따른 화염특성)

  • Kim, Jaeyeong;Lee, Dongwon;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.127-130
    • /
    • 2015
  • The objective of this study is to investigate the real flame shape and characteristic of annular combustor. To identify the effects of combustor length ratio and equivalence ratio on the flame shape in annular combustion configuration, the employed parameters are combustor length ratio 0.6-1.0, equivalence ratio 0.7-1.1. The flame shape is visualized using DSLR camera and precision optic mirror. The flame intensity is analyzed by $OH^{*}$ chemiluminescence images with ICCD camera. CO and NOx emission performance is also examined using an exhaust gas analyzer. From the visualized images, it is confirmed that the different tendency appeared in combustor length ratio 0.6-0.7 and 0.8-1.0. The results of $OH^{*}$ chemiluminescence show that the flame intensity is the most uniform for equivalence ratio 0.9. The smaller equivalence ratio is, the less emission of CO and NOx will be in this investigation range.

  • PDF

Spray and Combustion Characteristics of a Dump-type Ramjet Combustor

  • Lee, Choong-Won;Moon, Su-Yeon;Sohn, Chang-Hyun;Youn, Hyun-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2019-2026
    • /
    • 2003
  • Spray and combustion characteristics of a dump-type ram-combustor equipped with a V-gutter flame holder were experimentally investigated. Spray penetrations with a change in airstream velocity, air stream temperature, and dynamic pressure ratio were measured to clarify the spray characteristics of a liquid jet injected into the subsonic vitiated airstream, which maintains a highly uniform velocity and temperature. An empirical equation was modified from Inamura's equation to compensate for experimental conditions. In the case of insufficient penetration, the flame in the ram-combustor was unstable, and vice versus in the case of sufficient penetration. When the flame holder was not equipped, the temperature at the center of the ram-combustor had a tendency to decrease due to the low penetration and insufficient mixing. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length of the combustor became longer and the flame holder was equipped. Combustion efficiency increased when the length of the combustor was long and the flame holder was equipped. Especially, the effect of the flame holder was more dominant than that of the combustor length in light of combustion efficiency.

A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor (연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

Development and Test of Slinger Combustor for Micro Turbojet Engine (초소형 터보제트엔진 슬링거 연소기의 개발과 시험)

  • Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man;Kim, Hyung-Mo;Park, Poo-Min;Choi, Young-Ho;Jeon, Byung-Ho;Park, Soo-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • A slinger combustor which can be applied to micro turbojet engine has been developed with the combustor rig test. A rotating fuel injector with high speed rpm was designed, manufactured and tested to apply into slinger combustor through spray test and adequate droplet size and spray distribution were achieved. The CFD was used to analyze internal flow of the combustor. We found out that the combustor shows 11.2% of pressure loss and 99.8% of combustion efficiency at full combustor rig test.

  • PDF

Study on the Characteristics of an Annular Combustor for a 500 W Class Micro Gas Turbine Generator (500 W 급 마이크로 가스터빈 제너레이터용 환형 연소기의 특성에 관한 연구)

  • Do, Kyu Hyung;Kim, Taehoon;Han, Yong-Shik;Kim, Myung-Bae;Choi, Byung-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • In the present study, an annular combustor for a 500 W class micro gas turbine generator was designed and its characteristics were investigated by using both numerical and experimental methods. For this purpose, geometrical configurations of the annular combustor were determined in the aspect of the aerodynamic and chemical consideration. Also, fluid flow and pressure drop characteristics in the combustor were numerically studied by using commercial tool, FLUENT. Based on the numerical results, the diameter and the angle of air admission holes in the primary zone were chosen to be 2.5 mm and $30^{\circ}$, respectively. Finally, an integrated test unit, which consisted of a compressor, combustor, turbine, and motor/generator, was developed in order to measure the combustor efficiency. As the temperature difference between the combustor inlet and the turbine inlet or the air mass flow rate increased, the combustor efficiency increased and it was over 90% when the air mass flow rate was larger than 7.30 g/s. It was shown that the annular combustor developed in this study met the design requirement for a 500 W class micro gas turbine generator.

Experiment on the Limit Scale of Combustion in Constant Volume Micro Combustor (초소형 정적 연소기에서의 연소 한계에 대한 실험적 연구)

  • 나한비;권세진;김세훈;이대훈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.27-32
    • /
    • 2003
  • The Performance of micro combustor in various condition was exploited experimentally. Various geometric conditions of combustor were considered to figure out the performance of micro combustor. The micro combustor studied in this study was constant volume with cylindrical shape. Geometric parameters of combustor were defined to be combustor height and diameter. The effect of height was exploited parametrically with the size of 1mm, 2mm and 3mm. The effect of diameter was observed parameterized with 7.5mm and 15mm. Three different combustibles or Stoichiometric mixture of methane/air, hydrogen/air were used. Pressure transition during combustion process was recorded. The maximum pressure by combustion responded favorably with the change of height of combustor and the initial pressure. The flame propagation was visulized using Schlieren method. The flame propagation within combustor was observed when specific conditions such as combustor height and initial pressure over critical value was satisfied.

Influence of changing Combustor Pressure on Flame Stabilization and Emission Charncteristics (연소실 압력변동이 화염안정화와 배출특성에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2354-2359
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated. The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}$=Pabs/Patm), where Pabs and Patm indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of 0.7${\sim}$1.3 for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. NOx emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion, hence CO emission index increased. These oscillating flames were measured by simultaneous $CH^{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF