• Title/Summary/Keyword: Combustion velocity

Search Result 894, Processing Time 0.023 seconds

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

Flickering Frequency and Pollutants Formation in Microwave Induced Diffusion Flames (마이크로파가 인가된 화염에서의 주파수 특성과 오염물질 생성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • The use of electromagnetic wave has been interested in various energy industry because it enhances a flame stability and provides higher safety environments. However it might increase the pollutant emissions such as NOx and soot, and have harmful influence on human and environments. Therefore, it is very important to understand interaction mechanism between flame and electromagnetic wave from environmental point of view. In this study, an experiment was performed with jet diffusion flames induced by electromagnetic wave. Microwave was used as representative electromagnetic wave and a flickering flame was introduced to simulate the more similar combustion condition to industry. The results show that the induced microwave enhances the flame stability and blowout limit. The unstable lifted flickering flames under low fuel/oxidizer velocity is changed to stable attached flames or lift-off flames when microwave applied to the flames, which results from the abundance of radical pool. However, NOx emission was increased monotonically with increasing the microwave power as microwave power increased up to 1.0 kW. The effects might be attributed to the heating of combustion field and thermal NOx mechanism will be prevailed. Soot particle was examined at the post flame region by TEM grid. The morphology of soot particle sampled in the microwave induced flames was similar to the incipient soot that is not agglomerated and contain a lots of liquid phase hydrocarbon such as PAH, which soot particle formed near reaction zone is oxidized on the extended yellow flame region and hence only unburned young particles are emitted on the post flame region.

The Study of Pyrolysis Characteristics of Dioxin Precursor Chlorophenol (다이옥신 전구물질인 Chlorophenol 의 열분해에 관한 연구)

  • Jeong, Tae-Seop;Kim, Jong-Guk;Kim, Kyoung-Soo;Yoon, Byeng-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.179-185
    • /
    • 2000
  • In this study, we examined the movement of chlorophenol as a precursor of the dioxin in the after-combustion to minimize the creation and emission of dioxin in a municipal waste incinerator. The CPs was injected to the electric incinerator in temperature $300{\sim}500^{\circ}C$, using $N_2$ gas to control the reaction time, The oxygen quantity supplied into the $CP_s's$ isomer combustion was added with the value of experience formula. When the space velocity in reactor was 60~80/sec, the removal efficiency of CP was obtained in the presence of Mo-V catalyst and non catalyst. The efficiency in non-catalyst was 74% to 80% mono-CP, di-CP 55~66%, tri-CP 50~58%, while mono-CP 90~99.9%, di-CP 96~97%, tri-CP 76~99% in a catalyst. Consequently, it was shown that these were 20~30% more efficienct than those.

  • PDF

A Study of the Suitability of Combustion Chemistry in the EDC Model for the LES of Backdraft (백드래프트 현상의 LES를 위한 EDC 모델의 연소 화학반응기구 적합성 연구)

  • Myilsamy, Dinesh;Oh, Chang Bo;Han, Yong Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • Large Eddy Simulation (LES) was peformed for the backdraft occurred in a compartment filled with high-temperature methane fuel using the Fire Dynamics Simulator (FDS) of version 6. The prediction performance of FDS, adopted the Eddy Dissipation Concept (EDC) combustion model with five different chemical reaction mechanisms, was evaluated. The temporal distributions of temperature, fuel mass fraction, velocity and pressure were discussed with numerical results and the pressure variation in time was compared with that of previous experiment. The FDS adopted the EDC model showed the possibility of LES for the backdraft phenomena. However, the prediction performance of the LES with EDC model strongly depended on the chemical reaction mechanism considered. It is necessary that the suitability of the chemical reaction mechanism should be validated in advance for LES with the FDS v6 to be applied to the simulation of backdraft.

An Experimental Study on Pressure Loss in Straight Cooling Channels (직선형 냉각채널에서의 압력손실에 대한 실험적 연구)

  • Yoon, Wonjae;Ahn, Kyubok;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • A regeneratively-cooled channel in a liquid rocket engine is used to effectively cool a combustion chamber inner wall from hot combustion gas, and the heat transfer/pressure loss characteristics should be predicted in advance to design cooling channels. In the present research, five cooling channels with different geometric dimensions were designed and the channels were respectively manufactured using cutter and endmill. By changing coolant velocity and downstream pressure, the effects of manufacturing method, channel shape, and flow condition on pressure losses were experimentally investigated and the results were compared with the analytical results. At same channel shape and flow condition, the pressure loss in the channel machined by the cutter was lower than that by the endmill. It was also found that the pressure loss ratio between the experimental result and the analytical data changed with the channel shape and flow condition.

Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation (동축형 스월-제트 분사기의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2018
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by perturbing jet or swirl flow using a speaker as jet flow increases. As a result of measuring the ITF varying feed system length, a peak occurs at a resonance frequency of space where the perturbed flow passes. With jet excitation, the ITF magnitude decreases, but increases thereafter as increasing the jet flow. Therefore the larger the velocity difference between jet and swirl flow, the larger the ITF. With swirl excitation, ITF decreases as increasing the jet flow because of the energy decrease with respect to the constant downstream flow.

Characteristics of Autoignited Laminar Lifted Flames in Heated Coflow Jets of Carbon Monoxide/Hydrogen Mixtures (일산화탄소/수소 혼합기의 가열된 동축류 제트에서 자발화된 층류 부상화염의 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.639-646
    • /
    • 2012
  • The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process.

Chemical Reactions in the Coal-Methane-Air Flame (석탄화염내 화학반응에 관한 연구)

  • 박호영;안달홍;김종진
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.166-177
    • /
    • 2002
  • The present study is described of the flame structure of one-dimensional, flat, premixed, laminar, coal-air flame with some addition of methane for the flame stability. A low pressure burner operating at a combustion pressure of 0.3 arm was employed in order to extend the reaction zone. Predicted results from the models considered in the present study are compared with experimental results. Comparisons are included gas temperatures, species concentrations, char analysis and measured burning velocity. Among the models, Model II $I^{*}$-d, which specified devolatilization rate constants and a char surface area factor S=4, resulted in good agreement within the present experimental ranges. The results of char analysis suggest that the extent of the reaction occurring on the panicle might be underestimated in the model so that the char surface area should be increased. A value of 4 for this factor was given by sensitivity analysis of change in char surface area. Again, model II $I^{*}$-d gave satisfactory predictions of burning velocities over most of the experimental range studied. It has been clearly shown that the particle diameter appreciably affects the rates of devolatilisation and char oxidation through the effects of thermal lag and volumetric reactive surface area, consequently laminar burning velocity.ity.

Performance Prediction of Heat Regenerators with using Spheres: Relation between Heat Transfer and Pressure Drop (구형 축열체를 사용한 축열기의 성능예측: 압력손실과 열전달의 관계)

  • 조한창;조길원;이용국
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of heat of exhaust gaset. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of heat regenerator with spherical particles, was numerically simulated to evaluate the heat transfer and pressure drop and thereby to suggest the parameter for designing heat regenerator. It takes about 7 hours for the steady state of the flow field in regenerator, in which heat absorption of regenerative particle is concurrent with the same magnitude of heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The performance of thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator (cross-sectional area and length) and diameter of regenerative particle. As the gas velocity increases, the heat transfer between gas and particle enhances and with the increase the pressure losses. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled more with the increase of pressure losses.

A Study on the Transition of Hydrogen-Air and LPG-Air Explosion to Fire (수소와 액화석유 가스의 공기혼합기의 폭발 후 화재로 전이 연구)

  • Oh Kyu-Hyung;Lee Sung-Eun;Rhie Kwang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.150-154
    • /
    • 2004
  • Gas explosion characteristics of hydrogen and liquefied petroleum gas(LPG) were measured in 6L cylindrical vessel, and experiment for explosion to fire transition phenomena of the gases were carried out using the 270L vessel. Explosion characteristics were measured using the stain type pressure transducer and explosion to fire transition phenomena was analyzed with the hish-speed camera. Base on the experiment, it was found that explosion pressure was most high slightly above the stoichiometric concentration, and explosion pressure rise rate and flame propagation velocity were proportional to the combustion velocity. And we find that those kind of explosion characteristics affect the explosion-to-fire transition, in addition, explosion flame temperature, flame residence time, are important parameters in explosion-to-fire transition.