• 제목/요약/키워드: Combustion temperature

검색결과 2,757건 처리시간 0.029초

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

반도체레이져를 이용한 온도 및 농도의 계측 (Temperature and Concentration measurement using Semi-conductor diode laser)

  • 정대헌;노동순;지전유이
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.168-174
    • /
    • 2000
  • A diode laser sensor system based on absorption spectroscopy techniques has been developed to measure $CO_2$ concentration and temperature non-intrusively in high temperature combustion environments using a 2.0 ${\mu}m$ DFB(Distributed Feedback) laser. Two optics was fabricated in pig-tail fashion and all optical components were implemented in a single box. The evolution of measurement sensitivity was done using test cell by changing sweep frequency and $CO_2$ concentration. Gas temperature was determined from the ratio of integrated line strengths. Species concentration was determined from the integrated line intensity and the measured temperature. The result show that the system has 2% error in wide operation frequency range and accuracy of $CO_2$ concentration was about 3%. The system was applied to measure temperature and concentration in the combustion region of a premixed $CH_4$ +air triangular flame. The measurement results of gas temperature agreed well with thermocouple results. Many considerations were taken into account to reduce optical noise, etalon effect, beam steering and base line matching problem. The evaluations results and actual combustion measurement demonstrate the practical and applicability for in-situ and real time combustion monitoring in a practical system.

  • PDF

고온 예열 공기에 의한 난류 비예혼합 화염의 연소 특성 (Combustion Characteristics of a Turbulent Non-premixed Flame Using High Preheated Air)

  • 곽지현;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.561-568
    • /
    • 2003
  • An experiment using high preheated air in a turbulent non-premixed flame was performed to investigate the effects of high preheated air on the combustion characteristics. Combustion using high preheated and diluted air with flue gas is a new technology which enables NO emission to be reduced. In this study, Na was used as diluent and propane as fuel. Combustion characteristics, especially the distributions of the flame temperature, NO concentration and OH radical intensity were examined under the condition of 300 K, 600 K, 1000 K in terms of the combustion air temperature, and also under the condition of the dilution level from 21% to 13% in terms of oxygen concentration. As the preheated air temperature increased, it appeared that the flame length became shorter, maximum flame temperature increased, the reaction region moved to upstream, and NO concentration increased, but the flame temperature's fluctuation was reduced. In opposite, it was shown with decrement of oxygen concentration at the maximum temperature that both maximum value and the gradient of the flame temperature decreased, and NO emission also decreased considerably, but its fluctuation became larger, being inclined to be unstable.

이색법을 이용한 직접 분사식 디젤엔진 실린더내의 화염 분도 및 Soot 분포 측정에 관한 연구 (A Study on In-Cylinder Measurement of Flame Temperature and Soot Distribution in D.I. Diesel Engine Using Tow-Color Method)

  • 박정규;정수훈;원영호
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.42-53
    • /
    • 1999
  • Two dimensional flame temperature and KL value distribution from the luminous flame containing soot in a DI diesel engine were measured by the tow-color method using tow different wavelengths of the flame image. The combustion chamber of a DI diesel engine was visualized by elongating the piston and cylinder and the flame in the combustion chamber was photographed on a nega-color film using a high speed camera. In this study, color CCD camera was used to digitize the three color density of the film exposed to the flame and standard lamp . The accuracy of the measuring method depends on the calibration line of film made from a high temperature standard tungsten lamp. The formation and oxidization of soot in the diesel engine were studied by observing measured time history of KL factor and flame temperature . Also , effects of various shapes of combustion chamber and fuel injection on flame temperature. Also, effects of various shapes of combustion chamber and fuel injection on flame temperature and KL value distribution were examined.

  • PDF

정용연소장치에 의한 어유의 착화지연에 관한 연구 (A Study on the Ignition Delay of Fish Oil Using a Constant Volume Combustion Bomb)

  • 서정주;왕우경;안수길
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.50-58
    • /
    • 1993
  • The ignition delay of diesel oil and fish oil blended with diesel oils was investigated at various pressure and temperature conditions in a constant volume combustion bomb. The evaporation and combustion duration of diesel oil and fish oil blended with diesel oils were respectively different in high and low temperature. The dependence of ignition delay on the temperature was different in high and low temperature ranges which were divided at the 773K. The dependence of ignition delay on the pressure was almost linear, regardless of the test fuels at the constant temperature(863K). The ignition delay became longer as the blending rate of fish oil increased at the constant temperature and pressure, but it was especially short with 20% fish oil blended with diesel oils.

  • PDF

연소합성된 $TiO_2$ 나노입자의 입자특성에 대한 화염온도 변화의 영향 (Effect of Flame Temperature on the Characteristics of the Combustion Synthesized $TiO_2$ Nanoparticles)

  • 이교우
    • 한국연소학회지
    • /
    • 제11권1호
    • /
    • pp.11-18
    • /
    • 2006
  • In this work, $TiO_2$ nanoparticles were synthesized using $N_2-diluted$ and Oxygen-enriched coflow hydrogen diffusion flames. The effect of flame temperature on the characteristics of the formed $TiO_2$ nanoparticles was investigated. The measured maximum centerline temperature of the flame ranged from 2,103 K for oxygen-enriched flame to 1,339 K for $N_2-diluted$ flame. The visible flame length and the height of the main reaction zone were characterized by direct photographs. The characteristics of synthesized $TiO_2$ nanoparticles were analyzed by SEM and TEM images. From these images, it was evident that the formed nanoparticles were divided into two sorts. In the higher temperature region, over the 1,700 K, $TiO_2$ nanoparticles having spherical shapes with diameters about 60 nm were synthesized. In the lower temperature region, below the 1,600 K, the diameters of formed nanoparticles having unclear boundaries were ranged from 35 - 50 nm.

  • PDF

공동을 이용한 초음속 연소의 수치적 연구 (Numerical Simulation Study on Supersonic Combustion using the Cavity)

  • 정은주;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.255-260
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the flame holding and combustion enhancement. Additional fuel into the cavity prevents shear flow impingement on the trailing edge of the cavity. The high temperature freestream flow mixes with the cold hydrogen fuel that is injected into the cavity and raises the fuel temperature remarkably and become to start combustion. The high pressure in the cavity due to the cavity structure and combustion leads the hydrogen fuel to upstream. The shock in the cavity to be generated by the fuel injection joins together and reflects off the ceiling wall. This makes high pressure and low mach number region and makes a small recirculation in this region. This high stagnation temperature is nearly recovered in the shear layer in front of the cavity and leads to start combustion. In the downstream of the cavity, the wall pressure drops significantly. This means that the combustion phenomenon is diminished. Because fuel lumps at the trailing edge of the cavity then it spreads after the cavity so, in this region there is a strong expansion.

  • PDF

모델 변천에 따른 가스터빈 연소기 라이너의 부위별 손상유형 분석 (Analysis of Damage Patterns for Gas Turbine Combustion Liner according to Model Change)

  • 김문영;양성호;박상열;김상훈;박혜숙;원종범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2862-2867
    • /
    • 2008
  • High-temperature components of gas turbine operated for certain period of time can be reused by being repaired or rejuvenated. In case of the gas turbine combustion liners, the biggest and the most important one in the high-temperature components, come in a repair shop after operated for 8,000 or 12,000 hours according to the model and go through the repair and rejuvenation in order to be reused. A stated combustion liner is the first channel which has the combustion gas reached a nozzle from a fuel nozzle. Materials and coating properties of old and new model combustion liners were investigated. To repair these components after the visual inspection, the coatings of combustion liners were removed and then FPI(Fluorescent Penetrant Inspection), a kind of the NDI(Non-Destructive Inspection), was conducted. Damage patterns and the number of the damaged components were classified and analyzed based on data provided from the visual inspection over a long period of time. Focusing on the difference between old model and new model combustion liners, we analyzed the damage distribution and changes and consequently concluded that new model combustion liner would increase repair rate.

  • PDF

촉매연소 시스템 안정화 : 고온용 열교환기를 이용한 능동제어 (Catalytic Combustion System Stability : Active Centre with High Temperature Heat Exchanger)

  • 유상필;송광섭;류인수
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.133-140
    • /
    • 2002
  • Catalytic combustion known as one of the traditional oxidation methods of VOC gas is restricted to its applicable fields because of its reaction characteristics. But recently innovative improvement of catalytic endurance makes its applicable range broader from MEMs to industrial power generation. Therefore, control technologies based on the catalytic combustion characteristics are researched and developed dynamically. Especially, the stable control of catalytic combustion is an essential factor in a view of maximizing its efficiency. In this research, the fuel equivalence ratio and the preheating temperature of mixture gas is controlled by catalytic combustion system enhanced in heat transfer with high temperature heat exchanger. As a result the combustion characteristics of system was investigated, and both passive and active control type were compared and analyzed.

  • PDF

예열용 열 교환식 촉매연소기의 연소특성에 관한 실험 (The combustion characteristics of catalytic combustor with preheating heat exchanger)

  • 유상필;서용석;송광섭;류인수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.79-84
    • /
    • 2002
  • The catalytic heat exchanger was designed which employs the regenerative preheating system of combustion air. The characteristics of the catalytic heat exchanger have been experimentally studied at the various operating parameters. The results showed that the mixture velocity did not affect significantly the performance of catalytic combustor whereas the preheating temperature of combustion air affected significantly the conversion rate. The complete conversion was achieved in the catalyzed honeycomb at a preheating temperature of $370-390^{\circ}C$, a mixture velocity of 0.53 $^{\sim}$ 0.75 m/s and an equivalence ratio of 0.19 $^{\sim}$ 0.27. The heat exchange efficiency of the catalytic heat exchanger appeared to be about 75 % when the air of room temperature was used as a working fluid. The results showed that both the heat balance of the system and the mixture conditions determine its stable catalytic combustion.

  • PDF