• Title/Summary/Keyword: Combustion system

Search Result 2,159, Processing Time 0.034 seconds

An Investigation of Design Parameter and Atomization Mechanism for Air Shrouded Injectors

  • Lee, Ki-Hyung;Lee, Chang-Sik;Kim, Bong-Gyu;Jeong, Hae-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.751-757
    • /
    • 2003
  • With increasing requirements for the less harmful exhaust emissions and the better fuel economy, the conventional injectors in gasoline engines can be replaced by the air shrouded injector in order to provide improved combustion in engine operations. To find out the optimal shape of air shrouded atomizer attached to the conventional injector nozzle, the critical design parameters such as droplet size, fuel and air inlet angles, and injection angles were investigated based on experimental analyses. To explain the characteristics of fuel atomization, these experimental approaches were carried out using a Phase Doppler Particle Analyzer (PDPA) system. The droplet sizes of injected air fuel mixture were obtained by using the beam diffraction phenomenon. In order to improve the atomization effect, the various atomizers were investigated. The Saute. Mean Diameter (SMD) measured at the predetermined locations outside the atomizer represented the performance of fuel atomization. The experimental results show that the design factors and atomization mechanism needed for developing air shrouded injectors. The suggested design parameters in this paper can be a useful reference in the early design stage.

Numerical Simulation of Flame Propagation in a Micro Combustor (초소형 연소기내 화염전파의 수치모사)

  • Choi, Kwon-Hyoung;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.

Hydroxyl Radical Measurements in the Flame Using LIF (레이저유도 형광법을 이용한 화염내 OH 농도분포 계측)

  • Lee, Byeong-Jun;Gil, Yong-Seok;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.710-719
    • /
    • 1996
  • Laser applied combustion diagnostic techniques-laser induced fluorescence (LIF) and coherent anti-Stokes Ramann spectroscopy (CARS)-are demonstrated. The profiles of hydroxyl radical (OH) and temperature in the counterflow burner are measured and compared with the numerical results. OH radical is excited on the Q$_1$(6) line of the $A^2$$\sum^+$$\leftarrow$$X^2{\prod}$(1, 0) band transition (281.1 nm) and LIF signal is measured at the the bands of (0, 0) and (1, 1) transition (306~326 nm). Absolute OH radical is obtained by using the laser absorption technique. The quenching effects are considered. Temperature is measured using broadband CARS system. Two dimensional OH radical profile is also obtained. The profiles of OH radical and temperature are found to agree well with those of numerical calculation.

A Study on the Factors of Fuel-Film Formation in an EGI Gasoline Engine (전자 제어식 가솔린 엔진의 벽류 생성 요인에 관한 연구)

  • Kim, Bong-Gyu;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1530-1537
    • /
    • 1998
  • Mixture formation is one of the significant factors to improve combustion performance of an spark ignition engine. This is affected by spray and atomization characteristics of injector. In the case of EGI system, air-fuel mixing period is so short that a lot of fuel-film and liquid-fuel flow into cylinder. Since this fuel-film is not burnt perfectly in cylinder, it is exhausted in the form of HC emission. In this paper, three measurement techniques were utilized to measure spray characteristics and the amount of fuel-film in the cylinder. At first, PMAS was used to measure the spray characteristics such as size distributions, SMD, and spray angle. Secondly the amount and distribution of fuel-film which flow into through intake valve could be measured quantitatively using the fuel-film measuring device. And lastly, by optical fiber type spark plug used to detect the diffusion flame, the amount of unburned HC was measured. As the result of these experiments, the information of optimal spray characteristics and injection condition to minimize fuel-film could be built up.

자연계로부터 분리한 strain YJ에 의한 수소생산에 관한 연구

  • Lee, Gi-Seok;Gwak, Gyeong-O;Kim, Seong-Jun;Jeong, Seon-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.407-410
    • /
    • 2002
  • Hydrogen is considered to be a clean energy because it doesn't generate the global warming gas such as $CO_2$, SOx and NOx, after its combustion. In this study, strain YJ isolated from shore system was used to produce efficiently hydrogen using the various carbon sources such as glucose, sucrose and fructose and its characteristics were investigated in batch cultivation. The maximum hydrogen production shown that glucose, sucrose and fructose were highest obtained at 2, 4 and 5 % concentration, respectively. In addition, we investigated the effect of pH under various conditions as range of initial pH 5.5 to 8.0 pH because growth of strain YJ declined due to produced organic acids. The results showed that the highest production rate of hydrogen was obtained at pH 7.5.

  • PDF

Influence of Ultra-high Injection Pressure and Nozzle Hole Diameter on Diesel Flow and Spray Characteristics under Evaporating Condition (증발 조건에서 초고압 분사와 노즐 홀 직경이 디젤 유량 및 분무 특성에 미치는 영향에 대한 연구)

  • Cho, Wonkyu;Park, Youngsoo;Bae, Choongsik;Yu, Jun;Kim, Youngho
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • Experimental study was conducted to investigate the effects of ultra-high injection pressure and nozzle hole diameter on diesel flow and spray characteristics. Electronically controlled ultra-high pressure fuel injection system was made to supply the fuel of ultra-high pressure consistently. Three injection pressures, 80, 160, and 250MPa were applied. Four type of injectors with identical eight nozzle holes were used. The four injectors have nozzle hole diameters of 115, 105, 95, and $85{\mu}m$ respectively. Injection quantity and rate were measured to investigate flow characteristics according to injection pressures and nozzle hole diameters. Mie-scattering and shadowgraph were performed to visualize liquid and vapor phases of diesel spray in a constant volume combustion chamber (CVCC). Ambient conditions of high pressure and high temperature in a diesel engine were simulated by using CVCC.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

A Development of Forklift Shift and Constant Speed Endurance Test Controller for Dynamometer Test (다이나모 시험용 지게차 변속 및 정속 내구시험 제어기 개발)

  • Jung, G.H.;Lee, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.3
    • /
    • pp.13-21
    • /
    • 2007
  • A forklift is a motive machine powered by LPG, diesel engine or electric motors. The internal combustion engine type forklift is equipped with automatic transmission to meet the required drive load as well as the easy operation of the vehicle. This paper deals with the shift control and endurance test controller which is developed for the functional test of the newly designed automatic transmission on a dynamometer test bench. Its major function is to control the proportional solenoid currents, which is directly related to clutch pressures, for the given reference current trajectory during shift and sequential operation of shift schedule designed for the durability test at each gear. It also has the ability to monitor all the necessary test data through RS232 communication and log them to disk files. The current controller of embedded system is designed from the identified dynamics of solenoid coil and the current reference can be easily modified with a user interface software on PC so as to match the shift data by experiments.

  • PDF

A Study on the Adaptive Control of Spark Timing Using Cylinder Pressure in SI Engine (전기점화기관에서 실린더압력을 이용한 점화시기 적응제어에 관한 연구)

  • 조한승;이종화;유재석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.122-129
    • /
    • 1996
  • The spark timing is one of major parameters to the engine performance and emissions. The ECU controls the spark timing based on preset values, which are functions of load and speed, in most of today's automotive SI engine. In this system, the preset spark timing can be different from optimum value due to the deviations from mass production, aging effects and so on. In the present study, a control logic is investigated for real time adaptation of spark timing to optimal value. It has been found that crank angle of miximum cylinder pressure is one of the appropriate parameters to estimate the optimum spark timing throught experiment. It has also been observed for spark timing convergence by variation of engineering model factors. The simulation program including engineering model for cycle by cycle variation of combustion is developed for surveying spark timing control logic. It is also shown that simulation results reflect experiment outputs and reasonableness of spark timing control logic for crank angle of maximum cylinder pressure.

  • PDF

A Study on Thermo-flow Characteristics Analysis of Electric Water Pump (전동 워터펌프의 열유동 특성 해석에 관한 연구)

  • Kim, Sung-Chul;Song, Hyeong-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.95-101
    • /
    • 2012
  • An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. The canned type electric water pump without mechanical sealing elements was selected to meet the requirements for operational reliability and life. However, the electric water pump for internal combustion engine generates much more heat loss than for hybrid electric vehicle since it is operated by the electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump as an inverter integrated water pump has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of $125^{\circ}C$, water pump speed of 6000 rpm, coolant temperature of $106^{\circ}C$ and coolant flow rate of 120 L/min was used as a standard condition. Therefore, flow fields and temperature distribution inside the water pump were obtained. Also, we checked the feasibility of the canned type for the electric water pump in comparison with the mechanical seal type.