• Title/Summary/Keyword: Combustion synthesis SHS

Search Result 50, Processing Time 0.027 seconds

Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis (SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조)

  • Park, Je-Sin;Sim, Geon-Ju
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF

Synthesis of Tungsten Boride using SHS(Self-propagating High-temperature Synthesis) and Effect of Its Parameters (자전연소 합성법을 이용한 W-B 화합물 합성 및 조건 변수의 영향)

  • Choi, Sang-Hoon;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Due to their unique properties, tungsten borides are good candidates for the industrial applications where certain features such as high hardness, chemical inertness, resistance to high temperatures, thermal shock and corrosion. In this study, conditions were investigated for producing tungsten boride powder from tungsten oxide($WO_3$) by self-propagating high-temperature synthesis (SHS) followed by HCl leaching techniques. In the first stage of the study, the exothermicity of the $WO_3$-Mg reaction was investigated by computer simulation. Based on the simulation experimental study was conducted and the SHS products consisting of borides and other compounds were obtained starting with different initial molar ratios of $WO_3$, Mg and $B_2O_3$. It was found that $WO_3$, Mg and $B_2O_3$ reaction system produced high combustion temperature and radical reaction so that diffusion between W and B was not properly occurred. Addition of NaCl and replacement of $B_2O_3$ with B successfully solved the diffusion problem. From the optimum condition tungsten boride($W_2B$ and WB) powders which has 0.1~0.9 um particle size were synthesized.

Combination of Mechano-chemical Activation and SHS for HTS Material Synthesis

  • N. Korobova;Deawha Soh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.96-99
    • /
    • 2004
  • The combination of mechano-chemical activation and Self-propagating High-temperature Synthesis (SHS) has widened the possibilities for both methods. For YBCO systems the investigation showed that a short-term mechano-chemical activation of initial powders before SHS leads to single-phase and ultra-fine products. A new technique for preparation ultra-fine high-temperature superconductors of YBCO composition with a grain size d <1 ${\mu}{\textrm}{m}$ is developed. The specific feature of the technique is formation of the YBa$_2$Cu$_3$O$_{7-{\delta}}$ crystalline lattice directly from an X-ray amorphous state arising as a result of mechanical activation of the original oxide mixture. The technique allows the stage of formation of any intermediate reaction products to be ruled out. X-ray and magnetic studies of ultra-fine high temperature superconductors (HTS) are carried out. Dimension effects associated with the microstructure peculiarities are revealed. A considerable enhancement of inter-grain critical currents is found to take place in the ultra-fine samples.fine samples.

  • PDF

New technology for doped Fe alloys production

  • Ksandopoulo, G.;Korobova, N.;Baydeldinova, A.;Isaykina, O.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.274-277
    • /
    • 2000
  • SHS is recognized as an attractive process for producing high-temperature, hard materials that difficult and/or expensive to produce by conventional fabrication methods. The goal of this work is to investigate new express technology of doped Fe alloys materials. The high density, homogeneity of the components, and the low processing temperatures achieved and minimum synthesis time are all of paramount importance in fabricating Fe alloys as functional materials.

  • PDF

A Study on the Synthesis of Titanium Nitride by SHS(Self-propagating High-temperature Synthesis) Method (자체반응열 고온합성법에 의한 질화티타늄 합성에 관한 연구)

  • Ha, Ho;Kim, Kwang-Rae;Lee, Hee-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.12
    • /
    • pp.1096-1102
    • /
    • 1993
  • Titanium nitride was synthesized by reacting Ti powder with nitrogen gas using SHS method. In this process, the effects of nitrogen pressure, dilution with TiN, or additiion of titanium hydride(TiH1.924) on the conversion of Ti to TiN were investigated. In particular, much effects were given to solve the problem of the conversion drop due to partial melting and subsequent sintering of Ti parciels, by controlling combustion temperature and combustion wave velocity via mixing Ti powder with TiN or/and TiH1.924. For the diluted titanium powders with TiN, the conversion close to 100% was resulted when the nitrogen pressure was over 8atm and with diluent content of 60wt%, and the self-propagating reaction was not sustained when the diluent content was higher than 60wt%. For samples mixed to be 55wt% in Ti component in the mixture of Ti, TiH1.924, and 45% TiN, the conversion was closed to 100% when the amount of titanium hydride added was over 7wt% and the nitrogen pressure was higher than 5atm. The combustion reaction, however, was not sustained when titanium hydride added was more than 10wt%.

  • PDF

A Study on Synthesis and Characterization of $Ti_xZr_{1-x}C$ Solid-Solution by Self-propagation High Temperature Synthesis Method (SHS법에 의한 $Ti_xZr_{1-x}C$ 고용체의 합성 및 특성 연구)

  • 이형복;오유근;이성민
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.731-737
    • /
    • 1997
  • TixZr1-xC(0$0^{\circ}C$, 5.1 mm/sec respectively. The relative density, three point flexural strength, and the hardness of composites, which was sintered at 190$0^{\circ}C$ for 60 min by using hot-pressing under a pressure of 30 MPa, were 99%, 525 MPa and 24 GPa respectively.

  • PDF

Characteristics of $\textrm{Al}_2\textrm{O}_3$-SiC Composite Powder Prepared by SHS Process and its Sintering Behavior (SHS법에 의한 $\textrm{Al}_2\textrm{O}_3$-SiC 복합분말 제조 및 소결특성)

  • An, Chang-Yeong;Yun, Gi-Seok;Jeong, Jung-Chae;Won, Chang-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.817-824
    • /
    • 1999
  • The $Al_2$$O_3$-SiC composite powder was prepared by Self-propagating High-Temperature Synthesis(SHS) process using $SiO_2$Al and C powders as raw material. The effects of the molar ratio in raw material, compaction pressure, initial temperature of reactants on the products and combustion process were studied. Self-propagating high temperature synthesis of $SiO_2$/Al/C system should be preheated above $400^{\circ}C$ owing to the low combustion temperature. As the result of the combustion reaction, the purity of final product became better than that of reactants. In this system, the optimum molar ratio of $SiO_2$:Al:C was 3.0:4.0:6.0. The free carbon was removed by roasting at $650^{\circ}C$ for 30min. In this study, pressureless sintering was very dffective both for controlling the disintegration of specimen with powder bed and for obtaining dense sintered-body at $1700^{\circ}C$. The sintered-body produced with hot-pressing was about 98% of the theoretical relative density.

  • PDF

The Effct of SHS Reaction Heat Control on the Microstructure of TiAl (고온 자전 합성시 반응열 제어가 TiAl 미세 조직에 미치는 영향에 관한 연구)

  • Mun, Jong-Tae;Yeom, Jong-Taek;Sin, Bong-Mun;Kim, Yong-Seok;Lee, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.869-879
    • /
    • 1995
  • TiAi intermetallic compound has been extensively studied for possible high temperature structural applications because of its high specific strength at high temperature, high creep resistance, and good oxidation resistance at elevated temperatures. In addition to its good properties, an economic manufacturing routes should be developed for this material to be used more extensively. One of the promising route in manufacturing TiAl intermetallics is the Self-propagating High-temperature Synthesis (SHS) method. Thus in this study, an attempt was made to study the mechanism of the SHS process in TiAl synthesis. The composition of the sample was Ti-(45, 50, 53)at% Al and the microstuctures of the products were analyzed using optical microscope and scanning electron microscope. When the phases formed at the main SHS reaction of whicyh combustion temperature is higher than the melting temperature of aluminum were identified as TiAl and Ti$_3$Al ; Ti$_3$Al cores surrounded by TiAl phase. In order to increase the combustion temperature, carbon was added 5 and 10at.%. When the carbon content was 10at.%, the heat of the reaction was large enough to melt the phase formed and that is consistent with the theoretical calculation results of the adiabatic temperature. The combution temperatue, which was measured by a computer data acquisition system, increased with the carbon content. The phases formed from the reaction involving the carbon added were indentified as TiAl and Ti$_2$AlC using XRD. The vickers hardness of the reaction product increased with the carbon content.

  • PDF

Preparation of ZrB2 by Self-propagating Synthesis and Its Characteristics (자전연소합성법에 의한 ZrB2 세라믹분말합성 및 NaCl의 영향)

  • Kim, Jinsung;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.255-258
    • /
    • 2014
  • Zirconium boride is an artificial or which is rarely found in the nature. $ZrB_2$ is popular in the hard material industry because it has a high melting point, excellent mechanical properties and chemical stability. There are two known methods to synthesize $ZrB_2$. The first involves direct reaction between Zr and B, and the second is by reduction of the metal halogen. However, these two methods are known to be unsuitable for mass production. SHS(Self-propagating High-temperature Synthesis) is an efficient and economic method for synthesizing hard materials because it uses exothermic reactions. In this study, $ZrB_2$ was successfully synthesized by subjecting $ZrO_2$, Mg and $B_2O_3$ to SHS. Because of the high combustion temperature and rapid combustion, in conjunction with the stoichiometric ratio of $ZrO_2$, Mg and $B_2O_3$; single phase $ZrB_2$ was not synthesized. In order to solve the temperature problem, Mg and NaCl additives were investigated as diluents. From the experiments it was found that both diluents effectively stabilized the reaction and combustion regime. The final product, made under optimum conditions, was single-phase $ZrB_2$ of $0.1-0.9{\mu}m$ particle size.

A Study on the Synthesis of Titanium Carbonitride by SHS(Self-propagating High-temperature Synthesis) Method (자체반응열 고온합성법을 이용한 Titanium Carbonitride의 합성에 관한 연구)

  • Ha, Ho;Hwang, Gyu-Min;Lee, Hee-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.6
    • /
    • pp.637-642
    • /
    • 1994
  • Using SHS(Self-propagating High-temperature Synthesis) method, the optimum synthetic condition of titanium carbonitride was established by controlling the parameters such as relative density of mixture (Ti+C), nitrogen pressure, additive amounts of titanium hydride(TiH1.924) and protecting heat loss. Under 1 atm nitrogen pressure, nitridation ratio with changing relative density of the sample compacts has a maximum (87.2%) at about 55%, and in the case of enveloping the pellet with a quartz tube, the highest nitridation ratio of 90% was obtained at about 68%. At relative density of 55%, nitridation ratio with the nitrogen pressure has a miximum (87.3%) at 7 atm. As the amounts of additive titanium hydride increased, nitridation ratio decreased at below 7 atm nitrogen pressure and, increased at above this pressure until percent of addition percent reached 15 wt% and decreased abruptly upon futher increases in titanium hydride. In the synthesis of TiCxNy by combustion reaction, heat transfer from combustion zone to preheating zone and nitrogen gas penetration into the compact were found to be important factors affecting the TiCxNy formation. It was difficult to obtain high nitridation ratio when the conbustion temperature was either too high or too low, and it seems that the retention of high temperature after a combustion wave sweeped through the reactant mixture pellet is critical to obtain a satisfactory nitridation ratio.

  • PDF