• 제목/요약/키워드: Combustion quality

검색결과 286건 처리시간 0.027초

희박 예혼합 모형 가스터빈 내에서 연료/공기 혼합정도가 온도 특성에 미치는 영향 (Effect of Fuel/Air Mixing Quality on Temperature Characteristics in a Lean Premixed Model Gas Turbine)

  • 이종호;장영준;전충환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.274-280
    • /
    • 2005
  • 광학적 접근이 가능한 대기압, 실험용 덤프 연소기에서 실험적 연구를 수행하였다. 본 연구의 목적은 불안정 연소 동안 주기적으로 변하는 압력 사이클의 위상에 따른 온도를 측정함에 있다. 특히, 연소 불안정에 영향을 미치는 연료/공기의 혼합정도가 온도특성에 미치는 효과를 살펴보기 위해 반 스톡스 라만 분광학을 이용하였다. 본 논문에서는 위상에 따른 평균온도, 표준 오차, 확률 밀도함수 및 1900K 이상의 고온이 발생할 확률에 대한 결과가 제시되어있다. 실험결과에 대해 간략히 살펴보면, 압력위상에 따른 평균온도는 압력위상과 거의 동일 위상을 가짐을 확인할 수 있었고, 평균온도의 최대-최소 차이는 연료/공기 혼합이 양호할수록 작아지는 것을 발견할 수 있었다. 온도 확률밀도 함수는 화염 거동과 질소산화물 배출 특성에 대한 기본 자료를 제시해 주었다. 이러한 결과들은 궁극적으로 연소 불안정 발생 메커니즘과 열-음향학적 상호작용을 이해함에 있어 중요한 역할을 할 것으로 기대된다 하겠다.

  • PDF

부탄올의 분사 및 분무특성에 관한 실험적 연구 (An experimental study on the injection and spray characteristics of butanol)

  • 정탁수;왕우경;김상암
    • 수산해양기술연구
    • /
    • 제53권1호
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

Numerical Simulation of Extreme Air Pollution by Fine Particulate Matter in China in Winter 2013

  • Shimadera, Hikari;Hayami, Hiroshi;Ohara, Toshimasa;Morino, Yu;Takami, Akinori;Irei, Satoshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.25-34
    • /
    • 2014
  • In winter 2013, extreme air pollution by fine particulate matter ($PM_{2.5}$) in China attracted much public attention. In order to simulate the $PM_{2.5}$ pollution, the Community Multiscale Air Quality model driven by the Weather Research and Forecasting model was applied to East Asia in a period from 1 January 2013 to 5 February 2013. The model generally reproduced $PM_{2.5}$ concentration in China with emission data in the year 2006. Therefore, the extreme $PM_{2.5}$ pollution seems to be mainly attributed to meteorological (weak wind and stable) conditions rather than emission increases in the past several years. The model well simulated temporal and spatial variations in $PM_{2.5}$ concentrations in Japan as well as China, indicating that the model well captured characteristics of the $PM_{2.5}$ pollutions in both areas on the windward and leeward sides in East Asia in the study period. In addition, contribution rates of four anthropogenic emission sectors (power generation, industrial, residential and transportation) in China to $PM_{2.5}$ concentration were estimated by conducting zero-out emission sensitivity runs. Among the four sectors, the residential sector had the highest contribution to $PM_{2.5}$ concentration. Therefore, the extreme $PM_{2.5}$ pollution may be also attributed to large emissions from combustion for heating in cold regions in China.

숯가마 배가스 중 악취물질의 배출특성 (Emission Characteristics of Odor Compounds in a Charcoal Production Kiln)

  • 박성규;최상진;황의현;이정주;김대근
    • 한국대기환경학회지
    • /
    • 제30권4호
    • /
    • pp.319-326
    • /
    • 2014
  • Exhaust gas emitted as a result of the incomplete combustion of biomass in charcoal kilns includes odor compounds as well as other air pollutants such as particulate matters, sulfur and nitrogen oxides, and carbon monoxide. A number of offensive odor compounds affect quality of life. In this study, odor emissions were investigated from biomass burning in a pilot-scale charcoal kiln and a commercial-scale kiln. Complex odor from emission source reached up to 10,000 dilutions to threshold during the study period. Combustion fume was found to contain reduced sulfur compounds, aldehydes, and volatile organic compounds. Hydrogen sulfide and methyl mercaptan were the major odorants which highly contributed to the offensive odor.

CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (I) -연료/공기 혼합정도가 위상별 온도에 미치는 영향- (Phase-Resolved CARS Temperature Measurement in a Lean Premixed Gas Turbine Combustor (I) -Effect of Equivalence Ratio on Phase-Resolved Gas Temperature-)

  • 이종호;전충환;박철웅;한재원;장영준
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1184-1192
    • /
    • 2004
  • Experimental investigations were carried out in an atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane gas. The objective of this study was to obtain the phase-resolved gas temperatures at different phases of the oscillating pressure cycle during unstable combustion. CARS temperature measurements were made at several spatial locations under lean premixed conditions to get the information on temperature field within the combustor. Also the effect of incomplete fuel-air mixing on phase-resolved temperature fluctuation was investigated. Results including phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs) were provided in this paper. Temperature PDFs gave an insight on the flame behavior. And strong correlation between phase-resolved temperature profile and pressure cycle was observed. Results of the phase-resolved high temperature gave an additional information on the perturbation of equivalence ratio at flame as well as the effect of mixing quality on NOx emission characteristics.

SI 가솔린 엔진의 과급 및 흡기가 엔진 성능에 미치는 영향에 대한 연구 (A Study About the Effect of Supercharging and Intake Charge on Engine Performance in Spark Ignition Gasoline Engine)

  • 김기복;진석준;김치원;윤창식;한성현
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, it is designed and used the test engine bed which is installed with turbocharger, and in addition to equipped using by oxygen adder. It has been controlled the oxygen volumetric fraction of intake air chrge, and supercharged flow rate into the cylinder of SI 4-stroke engine, and then, has been analyzed engine performance, combustion characteristics, and exhaust emission as analysis parameters. The tested parameters were the oxygen fraction and the variation of engine speed and air-fuel ratio.

초음파 개질 경유의 연료특성과 연소특성의 상관성에 관한 연구 (II);화학구조와 세탄가의 상관관계 (A Study on Correlation of Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Irradiation (II);Correlation of Chemical Structure and Cetane Number)

  • 이병오;김용국;권오성;최두석;류정인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.163-170
    • /
    • 2002
  • The main objective of this study is to investigate the correlation of chemical structure and cetane number of reformed diesel fuels by ultrasonic irradiation. In order to analyze the effect of the chemical structure and the cetane number of reformed diesel fuels by ultrasonic irradiation, $^1H-NMR$ was used. From the study, following conclusive remarks can be made. 1) BI(=Branch Index), aromatics percentages, and $H_{\alpha}(={\alpha}-methyl$ functional group) of the reformed diesel fuels by ultrasonic irradiation decreased more than those of the conventional diesel fuel. 2) All the cetane numbers which were calculated from carbon type structure and hydrogen type distribution of the reformed diesel fuels increased more than those of the conventional diesel fuel. 3) Using predicated equation of cetane number caculated from carbon type structure is more reasonable than that caculated from hydrogen type distribution 4) BI, aromatics percentages, and $H_{\alpha}$ on both of conventional fuel and reformed diesel fuels by ultrasonic irradiation are inversely proportional to cetane number on these fuels.

  • PDF

죽탄 및 죽초액 제조를 위한 인도네시아산 및 국내산 대나무의 탄화특성 비교 연구 (A Study on Carbonization Characteristics of Indonesian and Korean Bamboo for Production of Bamboo Charcoal and Vinegar)

  • 양원;김희열;채태영
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.30-37
    • /
    • 2010
  • Carbonization characteristics of Indonesian bamboos were investigated using lab-scale tube furnace, in order to find optimum design temperature of a carbonizer for producing bamboo charcoal and vinegar. The bamboo samples used in this study are local bamboos from Damyang in Korea, Andong and Petung in Indonesia. Correlation of electric resistance, specific surface area and pH of bamboo vinegar with pyrolysis temperature has been investigated. Electric resistance of the charcoal increased for higher pyrolysis temperature the specific surface area was also increased as carbonization temperature got higher. Charcoal which has specific surface area of over $300\;m^2/g$ could be produced at $700^{\circ}C$. pH of bamboo vinegar was decreased for highter carbonization temperature and vinegar under pH 3 could be produced for all bamboo samples. In this experimental condition, it was found that lower carbonization temperature is better for producing bamboo vinegar of high quality, while higher temperature is better for obtaining bamboo charcoal with larger surface.

2015~2016년 경남지역의 PM2.5의 시·공간적 특성 (Spatio-Temporal Characteristics of PM2.5 in Gyeongnam Province during 2015-2016)

  • 손장호
    • 한국환경과학회지
    • /
    • 제26권9호
    • /
    • pp.1045-1055
    • /
    • 2017
  • Characterization of spatio-temporal variations in $PM_{2.5}$ in Gyeongnam (GN) province during 2015-2016 was investigated to assess the air quality in this area in terms of fine particles. Yearly mean concentrations of $PM_{2.5}$ ranged from 19.1 to $29.5{\mu}gm^{-3}$. High concentrations of $PM_{2.5}$ were observed in spring ($21.2-30.3{\mu}gm^{-3}$) and winter ($20.2-30.3{\mu}gm^{-3}$). Low concentrations of $PM_{2.5}$ were generally observed in fall ($16.2-23.2{\mu}gm^{-3}$). $PM_{2.5}$ concentration was highest in the morning (10 AM). The fractions of $PM_{2.5}$ in $PM_{10}$ were 0.51-0.62 and two were significantly correlated (r=0.779-0.830), suggesting common sources (fossil fuel combustion, mobile sources, etc). CO was significantly correlated with $PM_{2.5}$ in highly urbanized areas such as the city of Changwon (CW, r=0.711), compared to other air pollutants ($SO_2$, $NO_2$, and $O_3$), suggesting dominance of industrial combustion sources.

자동차용 가솔린과 디젤 연료의 증류특성에 관한 연구 (A Study on Distillation Property of Automotive Gasoline and Diesel Fuel)

  • 염광욱;김상진
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.11-15
    • /
    • 2014
  • Currently, there are active researches being conducted on a new combustion technology that can reduce emission quantity while enhancing vehicle performance as well as Improving fuel quality. In a gasoline engine that uses petroleum, high volatility makes it easy to jump spark ignition and prevent knocking phenomenon that occurs inside an engine. In a diesel engine that uses diesel fuel, high volatility reduces combustion residues and toxic gas and is therefore good for protecting the environment. Therefore, for fuel used in a vehicle, volatility is an important factor that influences not only engine performance but also environmental protection. This research conducted a distillation experiment using gasoline and diesel fuel for vehicles produced by domestic oil companies. The test was conducted in accordance with the method of distillation experiment described in KS M ISO3405. In addition, it used the result of analysis from the experiment to examine visual distillation characteristics of each fuel and developed a formula based on distillation temperature.