• Title/Summary/Keyword: Combustion parameters

Search Result 681, Processing Time 0.031 seconds

Acoustic Analysis of KSR-III Combustion Chamber with Various 5-Blade Baffles under Non-Reacting Condition (5-블레이드 배플이 설치된 로켓엔진 연소실에서의 상온음향 해석)

  • Kim, Hong-Jip;Kim, Seong-Ku;Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.167-171
    • /
    • 2003
  • Acoustic characteristics of baffled combustion chamber to elucidate suppressing effect of baffle on combustion instability are numerically investigated by linear acoustic analysis. A hub-blade baffle of 5 blades is selected as a candidate one and five variants of baffles with various configuration are designed. Resonant-frequency shift and damping factor are analyzed quantitatively as damping parameters. When the hub is located radially at the pressure node, the decrease of resonant frequency and increase of damping factor in 1R mode are dominant. But sub-1T mode is formed within hub, therefore, there would be a possibility of initiating 1T mode in unbaffled region, which would occur another problem. For smaller hub size, four kinds of axial baffle length is selected. As the axial baffle length increases, resonant frequency shift and increase of damping factor of transverse acoustic modes is obtained. Especially, two close acoustic modes such as 1L and 1T could be overlapped for a certain axial length, resulting in extreme increase of damping factor. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

  • PDF

Prediction of Combustion Characteristics in a 3D Model Combustor with Swirling Flow (스월이 있는 3차원 모델 연소기 내의 연소특성)

  • Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.95-104
    • /
    • 2003
  • The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on thermal NO emission through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal characteristics and NO emission in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature and thermal NO has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate, temperature and thermal NO were shifted to forward direction compared with the case of no swirl.

Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

The Emission Characteristics of a 4-stroke Large Diesel Engines for Propulsion and Generation Application in IMO modes (주.보기용 4행정 대형디젤엔진의 IMO운전모드에 따른 배기 배출특성)

  • 김현규;김규보;전충환;장영준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1472-1479
    • /
    • 2002
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke marine diesel engines in E3 cycle (propulsion application) and D2 cycle (generation application). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure on the specific emissions are described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that NOx emission level in E3 cycle is higher than that in D2 cycle due to lower engine speed at low load and the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

Validation of the Turbulent Burning Velocity Based on Asymptotic Zone Conditional Transport in Turbulent Premixed Combustion (영역조건평균에 기초한 난류예혼합 화염 전파 속도식 유도 및 검증)

  • Lee, Dong-Kyu;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • An analytical expression for the turbulent burning velocity is derived from the asymptotic zone conditional transport equation at the leading edge. It is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. It was previously shown that the inverse scale is equal to four times the maximum flame surface density in the wrinkled flamelet regime [1]. The linear behavior between $U_T$ and u' shows deviation with the inverse scale decreasing due to the effect of a finite flamelet thickness at higher turbulent intensities. DNS results show that $U_T/S^0_{Lu}$ may be given as a function of two dimensionless parameters, $u'/S^0_{Lu}$ and $l_t/\delta_F$, which may be transformed into another relationship in terms of $u'/S^0_{Lu}$, and Ka. A larger $l_t/{\delta}_F$ or a smaller Ka leads to a smaller scale of wrinkling, hence a larger turbulent burning velocity in the limited range of $u'/S^0_{Lu}$. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS in both wrinkled and thickened-wrinkled flame regimes.

  • PDF

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

Acoustic Tests on Atmospheric Condition in a Liquid Rocket Engine Chamber (액체로켓엔진 연소실에서의 상온 음향 시험)

  • Ko, Young-Sung;Lee, Kwang-jin;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • Acoustic characteristics of unbaffled and baffled combustion chamber are experimentally investigated under atmospheric condition to preliminarily determine baffle for mitigation of combustion instability. To investigate the effect of the baffle which has several configurations such as radial baffles and hub/blade baffle, resonant-frequency shift and damping factors of the chamber were analyzed and compared quantitatively with those of the unbaffled combustion chamber. From a view of acoustic characteristics, radial baffles with several configurations have not much difference in resonant-frequency shift and damping factor ratio with each other. On the other hand, hub and blade baffle is very effective to suppress the first tangential mode which was found to be the most harmful acoustic mode in KSR(Korean Sounding Rocket)-III engine. But more study on design parameters such as hub size and axial length should be done for complete optimization of hub and blade baffle. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

A Experimental Study on the Emission Characteristics in Stroke Propulsion Diesel Engine for Ship (선박용 주기용 4행정 디젤엔진의 배기배출물 배출 특성에 관한 실험적 연구)

  • 김현규;김종기;전충환;장영준
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-127
    • /
    • 2002
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

Simulation of SI-HCCI Transition in a Two-Stroke Free Piston Engine Fuelled with Hydrogen (수소 2행정 프리피스톤엔진의 SI-HCCI 변화에 관한 수치해석적 연구)

  • Hung, Nguyen Ba;Park, Kyuel;Lim, Ocktaeck
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.472-479
    • /
    • 2013
  • A free piston linear engine could be operated under HCCI combustion due to its variable compression ratios. To obtain HCCI combustion, the free piston linear engine needs a high compression ratio to achieve auto-ignition of the fuel/air mixture. In this study, an idea for obtaining a high compression ratio using the transition from SI combustion to HCCI combustion was proposed. The fuel used in this study is hydrogen, which is considered to be an environmentally friendly fuel. Besides, the effects of key parameters such as equivalence ratio (${\phi}$), load resistance ($R_L$) and intake temperature ($T_{in}$) on the SI-HCCI transition were numerically investigated. The simulation results show that the SI-HCCI transition is successful without any significant reduction of in-cylinder pressure as the intake temperature is increased from $T_{in}$=300K (SI mode) to $T_{in}$=450K (HCCI mode), while the load resistance and equivalence ratio are retained respectively at $R_L=120{\Omega}$ and ${\phi}$=0.6 in both SI mode and HCCI mode.