• Title/Summary/Keyword: Combustion flames

Search Result 642, Processing Time 0.029 seconds

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1172-1177
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the change of soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth region). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

Development of Low NOx Gas Burner Absorption Chiller/Heater Unit (흡수식 냉온수기용 저 NOx 가스버너 개발)

  • 최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.277-283
    • /
    • 1995
  • For the development of low NO$_{x}$ gas burners aimed for absorption chiller/heater unit, three proto type burners of different capacity (265000, 498000, and 664000 kcal/h) have been manufactured through a combustion method of step-by-step air injection. In order to characterize the overall features of the flame and the properties of the emission gas, the temperature of the flame and the concentration of NO$_{x}$ and CO were determined. The main factors in the design of burners (the area of primary air injection, the diameter of secondary air injection hole, fuel nozzle diameter) were observed to increase linearly with the scale-up of burner capacity. The flame temperature profiles of the burners were observed to be almost similar, irrespective of their capacity. However, as their capacity increased, the flame temperature slightly increased and the hot region of the flames moved to ward the flame tip along with the expansion to the direction of radius. From the proto type units, the amount of their NO$_{x}$ emission was determined to be around 25 - 30 vppm(3% )$_{2}$) and the CO emission was less than 19 vppm (3% $O_{2}$).TEX>).

PLIF and PIV Measurements of Jet Flames with Acoustically Forced Coaxial Air Jets

  • Han Jeong Jae;Kim Munki;Yun Sang Wook;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • Acoustic excitations were imposed to coaxial air jet of non-premixed jet flame with hydrogen gaseous injected axially in the center of the flow. The frequencies of excitation were three dominant resonant frequencies at 1L, 2L, 3L. modes including specially 514 Hz (2L-mode) which was estimated theoretically as longitudinal mode of combustor characteristics. The mixing enhancement by acoustic forcing has been investigated quantitatively using PLIF and PIV. The effect of acoustic excitation on combustion process was significant to enhance mixing rate that coincides with specific resonant frequencies. And the behavior of vortex-interaction on flame structure was a good evidence to investigate the phenomenon of shear/mixing layer of fuel-air jet structure. The results obtained in this study concludes that generated streamwise vortex by acoustic excitation has a potential to enhance the mixing rate and abating NOx emissions.

  • PDF

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Votex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.52-60
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. Results show that the fuel and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF

Dilution and Thermal Effects of N2 Addition on Soot Formation in Co-flow Diffusion Flame (동축류 확산화염에서 질소첨가가 Soot발생에 미치는 영향)

  • Eom, Jae-Ho;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.185-191
    • /
    • 2002
  • The influence of N2 addition on soot formation, flame temperature and NOx emissions is investigated experimentally with methane fuel co-flow diffusion flames. The motivation of the present investigation is the differences in NOx reduction reported between fuel-side and oxidizer-side introduction of N2. To determine the influence of dilution alone, fuel was diluted with nitrogen while keeping the adiabatic flame temperature fixed by changing the temperature of the reactants. And to see the thermal effect only, air was supplied at different temperature without N2 addition. N2 addition into fuel side suppressed the soot formation than the case of oxidizer-side, while flame temperature enhanced the soot formation almost linearly. These results reveals the relative influences of the thermal, concentration effects of N2 additives on soot formation In accordance with experimental study, numerical simulation using CHEMKIN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results. Emission test revealed that NOx emissions were affected by not only flame temperature but also N2 addition.

  • PDF

Time and distance of tulip-inversion in various shaped tube (다양한 형상의 관내에서 화염전파시 튤립화염으로 전환되는 시간과 거리)

  • Jung, Sang-Hun;Lee, Uen-Do;Kim, Nam-Il;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.140-146
    • /
    • 2002
  • The tulip-inversion of flames in half-open tubes was investigated experimentally. Experiments was carried out in tubes with various shapes. The image of a flame propagation were pictured by HICCD(High speed intensified CCD) and the dynamic pressure of tubes was measured by a piezo pressure sensor. By analyzing the images of the flame propagation, we found the time and the distance for the occurrence of tulip-inversion. Regardless of the shapes of tubes, time of tulip-inversion are similar and inversely proportional to the burning velocity. But distances have different tendency. In a straight tube, the distance of tulip-inversion increases when the burning velocity increases. But in a converging tube, the distance of tulip-inversion decreases when a burning velocity increases. And the distance of tulip-inversion in a converging tube is much smaller than the distance of tulip-inversion in a straight tube. These results are caused by the deceleration of a flame when the diameter of a hole in open-side of a tube is small. The deceleration causes little effect on the time of tulip-inversion.

  • PDF

Experimental Study on Edge Flame Instabilities in Solid Rocket Combustion (고체로켓연소에서 에지화염 불안정성에 대한 실험적 연구)

  • Hwang Dong-Jin;Park Jeong;Kim Jeong-Soo;Kim Sung-Cho;Kim Tae-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations are categorized into three: a growing-, a decaying-, and a harmonic-oscillation mode.

  • PDF

Characteristics of Laminar Lifted Flames in Coflow Jet with Various Coflow Velocities (동축류 제트에서 동축류 속도에 따른 층류 부상화염의 특성 연구)

  • Lee, S.J.;Kim, K.N.;Won, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.21-26
    • /
    • 2004
  • Characteristics of laminar lifted names in coflow jet with various coflow velocities have been studied experimently. USlI1g the fuel nozzle with d=0.254 for the pure propane, liftoff heights are fitted by using power equation with jet velocity. As coflow velocity increases up to 60 cm/s powers of fitting equation steeply decrease. From the result of numerical analysis using the FLUENT, the stoichiometry contour and the axial velocity nondimensionalized by initial jet velocity along the stoichiometry contour are changed with variations of coflow velocities, The change of axial velocity along stoichiometric contour is more sensitive than that of stoichiometric contour, For this reason, powers of fitting equation for liftoff height with jet velocity decreases with the increase of coflow velocity. Using the fuel nozzle with d=4,35 mm for the highly diluted propane by nitrogen, the liftoff height increases with the increase of coflow velocity when coflow velocity is less than the maximum value of initial jet velocity. But when coflow velocity is faster than that, the liftoff height decreases with the increase of coflow velocity.

  • PDF

Simulation of a Diffusion Flame in Turbulent Mixing Layer by the Flame Hole Dynamics Model with Level-Set Method (Level-Set 방법이 적용된 Flame Hole Dynamics 모델을 통한 난류 혼합층 확산화염 모사)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.102-111
    • /
    • 2004
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics to develope a prediction model for the turbulent lift off. The present study is specifically aimed to remedy the problem of the stiff transition of the conditioned partial burning probability across the crossover condition by adopting level-set method which describes propagating or retreating flame front with specified propagation speed. In light of the level-set simulations with two model problems for the propagation speed, the stabilizing conditions for a turbulent lifted flame are suggested. The flame hole dynamics combined with level-set method yields a temporally evolving turbulent extinction process and its partial quenching characteristics is compared with the results of the previous model employing the flame-hole random walk mapping. The probability to encounter reacting' state, conditioned with scalar dissipation rate, demonstrated that the conditional probability has a rather gradual transition across the crossover scalar dissipation rate in contrast to the stiff transition of resulted from the flame-hole random walk mapping and could be attributed to the finite response of the flame edge propagation.

  • PDF

Numerical Study on the Thermophoretic Deposition Characteristics of Soot Particles for Wall Temperature of Burner and Surrounding Air Temperature in Combustion Duct (버너의 벽면온도와 연소실내 주위공기온도에 따른 매연입자의 열영동 부착 특성에 관한 수치적 연구)

  • Choi, Jae-Hyuk;Han, Won-Hui;Yoon, Doo-Ho;Yoon, Seok-Hun;Chung, Suk-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The characteristics of soot deposition on the cold wall in laminar diffusion flames have been numerically analyzed with a two-dimension with the FDS (Fire Dynamics Simulator). In particular, the effects of surrounding air temperature and wall temperature have been discussed. The fuel for the flame is an ethylene ($C_2H_4$). The surrounding oxygen concentration is 35%. Surrounding air temperatures are 300K, 600K, 900K and 1200K. Wall temperatures are 300K, 600K and 1200K. The soot deposition length defined as the relative approach distance to the wall per a given axial distance is newly introduced as a parameter to evaluate the soot deposition tendency on the wall. The result shows that soot deposition length is increased with increasing the surrounding air temperatures and with decreasing the wall temperature. And the numerical results led to the conclusion that it is essential to consider the thermophoretic effect for understanding the soot deposition on the cold wall properly.