• 제목/요약/키워드: Combustion flames

검색결과 642건 처리시간 0.029초

메탄/공기 층류 부분 예혼합화염의 화염구조와 NOx 배출특성;예혼합 인자의 영향 (Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed $CH_4$/Air Flames;Effect of Premixing Degree)

  • 오정석;정용기;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.75-81
    • /
    • 2003
  • In this paper, the study of effects of flow variables on flame structure and NOx emission concentration was performed in co-axial laminar partially premixed methane/air flames. the objectives are to reveal its effect as parameters were varied and to understand the correlation between flame structure and NOx emission characteristics in the reaction zone. equivalence ratio(${\Phi}$), fuel split degree(${\sigma}$), and mixing distance(x/D) were defined as a premixing degree and varied within $1.36{\sim}3.17$(equivalence ratio), $50{\sim}100$(fuel split degree), and $5{\sim}20$(mixing distance). the image of $OH{\ast}$ and $CH{\ast}$, and NOx concentration were obtained with an ICCD camera and a NOx analyzer. additionally the maximum intensity location of $OH{\ast}$ chemiluminescence and $CH{\ast}$ chemiluminescence were measured to compare each flame structures. In conclusion flame structure and NOx emission characteristics were changed from diffused to premixed flame when mixing degree was on the increase. the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split degree(${\sigma}$), and finally mixing distance(x/D).

  • PDF

PIV/OH PLIF 동시측정을 이용한 난류 대향 분출 예혼합화염 구조 연구 (Reseach on Structure of Turbulent Premixed Opposed Impinging Jet Flame with Simultaneous PIV/OH PLIF measurements)

  • 조용진;김지호;조태영;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.1-9
    • /
    • 2002
  • Simultaneous PIV and OH PLIF measurements are used for shear strain rates and flame locations, respectively. It is believed that the shear strain rates represent flow characteristics such as turbulence intensity and the OH intensity indicates the flame characteristics such as burning velocities. However, these are still lack of geometric information, which may be very important to flame quenching Hence, fractal dimensions 'Df) of the OH images are adopted as an additional information. Finally, the flame structure diagram proposed in this research has three parameters, which consist of strain rates, OH intensities and fractal dimensions. The results show that this diagram classifies turbulent premixed flames more effectively based on flame structures. The regime of weak turbulence is limited to narrow strain ranges and has the fractal dimension of about 2 In the regime of moderate turbulence, OH intensities increase as strain rates increase and the values of fractal dimensions are 1.8 Df 1.95. The regimes of thickened reaction and flame extinction (quenching) show bell-shaped and their values of fractal dimensions are 1.5 Df 1.7 and 0.9 Df 0.6, respectively.

  • PDF

동축공기 수소 확산화염의 구조 및 화염길이 스케일링 (Flame Length Scaling and Structure in Turbulent Hydrogen Non-Premixed Jet Flames with Coaxial Air)

  • 윤상욱;오정석;김문기;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.105-110
    • /
    • 2006
  • Many previous works have been performed to provide correlations of flame length, theoretically and experimentally. Most of these results studied were conducted in vertical turbulent flame with no coaxial air condition. The present study analyzes the flame length scaling with coaxial air. In turbulent hydrogen non-premixed jet flames with coaxial air, flame length scaling theoretically proposed so far has been related with the concept of a far-field equivalent source. At high coaxial air to fuel velocity ratio, $U_A/U_F$, however, this scaling theory has some difference with experimental flame length data. This difference is understood to be due to the fact that the theory is based on far-field notion, while the effect of coaxial air on jet flame occurs in the region near the nozzle exit. Therefore, we define effective jet density $P_{eff}$ involving the concept of near-field so that effective jet diameter can be extended to the near-field region. In this condition, we modify the correlation and compare with experimental data.

  • PDF

관내 프로판/공기와 메탄/공기 화염의 펄럭임 현상에 대한 연구 (Study on the flickering behavior of propane/air and methane/air premixed flame confined in a tube)

  • 곽영태;이대근;오광철;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.26-31
    • /
    • 2006
  • Flickering behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated. Unsteady behaviors of the flame were monitored by a high speed ICCD camera and the flickering frequency was defined as the number of flame curvatures passing a fixed spatial point in a second. Unlike previous studies in which flames are in open condition so that the flickering mechanism is an unstable interaction of hot buoyant products with the ambient air, flames in this study are surrounded by a tube which means they are not open to ambient air, so that there is no interaction between hot buoyant products and ambient air. Despite the fact, there exists flickering phenomena and the flickering frequency ranges from 10 Hz to 50 Hz which is wider compared to previous studies. We relate the flickering mechanism to flame-generated vorticity and analytic solution for locally approximated flow is used. As a result, the relationship between flickering wavelength and dimensionless vorticity is acquired and the cause of higher range of flickering frequency is explained.

  • PDF

동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II (An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II))

  • 조용대;최병윤
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1234-1243
    • /
    • 1990
  • 본 연구에서는 선회가 없는 중심기류와 주위기류의 난류 전단층에서 형성되는 난류확산화염의 천이영역(transition region)에 주목하여 전단층내의 혼합작용과 화염 구조와의 상호작용을 규명하기 위해 거시적 및 순간적인 화염구조에 대해 실험적으로 조사 연구한 결과를 보고한다.

경유와 메탄올의 유출표면에 따른 화재특성에 관한 실험적 고찰 (An Experimental Investigation on Fire Characteristics of Light Oil & Methanol for Spilled Surface)

  • 이정윤;정기창;김홍
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.103-108
    • /
    • 2010
  • In this study, tank truck incidents of road transport of hazardous materials to experimental investigated the potential fire hazard. Real scale fire was to perform experiments for on this qualitative and quantitative data collection and analysis. Particularly affected by radiant heat from the flames caused and damage estimates range investigated accordingly. Flame temperature, internal temperature of tank and emitted radiation from the flames was investigated. The flame of light oil spill caused a fire at a temperature of about $300^{\circ}C$ high in comparison with the methanol by combustion of diesel and methanol, according to the difference, the flame duration changes varies depending on the Burning rate, amount of radiant heat flux from light oil fire was 4 times increases compared with fire of methanol. Depending on spill locations(kinds of road surfaces, absorbing rate) and the longer the duration of the flame important factors for the internal temperature of tank truck rise was found. Dirt roads than paved road accident in a fire caused by leakage of hazardous was could the higher the damaged. Therefor, Fire suppression activities should be required in particular to be around.

Effects of Various Densities and Velocities to Gaseous Hydrocarbon Fuel on Near Nozzle Flow Field in Laminar Coflow Diffusion Flames

  • Ngorn, Thou;Jang, Sehyun;Yun, Seok Hun;Park, Seol Hyeon;Lee, Joo Hee;Choi, Jae Hyuk
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.291-293
    • /
    • 2015
  • The experimental study on flow characteristic in various laminar coflow diffusion flame has been conducted with a particular focus on the buoyancy force exerted from gaseous hydrocarbon fuels. Methane ($CH_4$), Ethylene ($C_2H_4$) and n-Butane ($C_4H_{10}$) were used as fuels. Coflow burner and Schlieren technique were used to observe the fuel flow field near nozzle exit and flow characteristics in flames. The result showed that the vortices in n-Butane with density heavier than air were appeared near the nozzle exit with the strong negative buoyancy on the fuel stream. As Reynolds number increases by the control of velocity, the vortices were greater and the vortices tips were moved up from the nozzle exit. In addition, it can be found that the heated nozzle can affect to the flow fields of fuel stream near the nozzle exit.

  • PDF

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

일산화탄소/수소 혼합기의 가열된 동축류 제트에서 자발화된 층류 부상화염의 특성 (Characteristics of Autoignited Laminar Lifted Flames in Heated Coflow Jets of Carbon Monoxide/Hydrogen Mixtures)

  • 최병철;정석호
    • 대한기계학회논문집B
    • /
    • 제36권6호
    • /
    • pp.639-646
    • /
    • 2012
  • 가열된 동축류 공기에서 일산화탄소/수소의 층류 제트에 대한 자발화된 부상화염의 특성을 조사하였다. 그 결과로 자발화가 발생하지 않는 영역에서는 제트속도의 증가에 따라 노즐부착화염에서 안정화된 층류 부상화염을 거치지 않고 바로 화염날림이 발생하였다. 자발화 영역에서, 질소 희석된 일산화탄소의 자발화된 부상화염은 산화제 내의 함유된 수분에 따른 점화지연시간의 변동으로 그 부상높이가 크게 영향을 받았다. 그리고 수소에 의한 저온 자발화 영역에서 자발화된 부상화염은 제트속도의 증가에 따라 부상높이가 감소하다가 증가하는 독특한 현상이 발생하였다. 점화지연시간에 의한 자발화된 층류 부상화염의 안정화 메커니즘을 기반으로, 그 부상높이의 거동은 점화 과정에서 발생하는 열손실의 영향뿐만 아니라 연료제트의 운동량과 질량의 선호 확산에 의하여 영향을 받을 수 있다는 것을 확인하였다.

음향 가진된 충돌 역 확산화염의 화염형상과 열전달 특성에 관한 실험적 연구 (An Experimental Study on the Flame Appearance and Heat Transfer Characteristics of Acoustically Excited Impinging Inverse Diffusion Flames)

  • 강기중;이기만
    • 한국산학기술학회논문지
    • /
    • 제11권10호
    • /
    • pp.3647-3653
    • /
    • 2010
  • 본 오디오 스피커로 음향 가진과 비가진 된 충돌 역 확산화염에서 화염의 형상과 열전달 특성에 관한 실험적 연구를 수행하였다. 가진에 의해 화염은 반응대가 넓어지고 화염 길이는 좀 더 짧아지는 경향을 보이며 충돌판의 정체점에서 열전달 성능인 열유속은 가진에 의해 향상되는 것으로 나타났다. 이러한 가진 효과는 당량비가 높은 과농한 상태 보다 상대적으로 낮은 혼합 상태에서 효과적으로 영향을 미치는 것으로 파악되는데 이는 가진에 의해 주위산화제가 연료 분류로의 유입이 향상되어 나타나는 것으로 판단된다. 이러한 현상으로 본 연구에서는 당량비가 0.8인 경우 정체점에서 총 열유속이 최대 57% 증가되는 것으로 나타났다. 따라서 본 연구를 통해 가진 연소가 충돌 분류 화염에서 열전달 성능을 향상시키는데 효과적인 방법임을 확인하게 되었다.