• Title/Summary/Keyword: Combustion flame

Search Result 2,024, Processing Time 0.033 seconds

Analysis of Flows in the Combustor with Recirculating Flow Regime (재순환영역을 가지는 연소기내의 연소유동해석)

  • 신동신;허남건
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.22-31
    • /
    • 1997
  • We developed a general purpose program for the analysis of flows in the combustor with recirculating flow regime and simulated the flows. The program uses non-staggered grids based on finite volume method and the primitive variables are cartesian velocities. The combustion model is irreversible one step reaction with infinite chemistry The Favre averaged governing equations are considered and the clipped gaussian distribution is considered as a probability density function of the conserved scalar. We calculated turbulent diffusion flame with recirculating flow regime. Simulation shows two recirculating regions like experimental results. Velocity, turbulent kinetic energy, temperature and concentration distribution in simulation agree well with experimental data.

  • PDF

Flame Propagation and NO Formation Characteristics in Oxy-fuel Pulverized Coal Combustion (순산소 미분탄 연소에서 화염전파와 NO 생성 특성)

  • Moon, Cheor-Eon;Choi, Gyung-Min;Kim, Duck-Jool;Kim, Tae-Hyung;Seo, Sang-Il
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.365-366
    • /
    • 2009
  • 미분탄 순산소 연소는 기존의 연소 방법과는 달리 산화제로 O2/CO2를 사용함으로써 NOx의 발생을 감소시킬 수 있으며, 고농도의 CO2를 쉽게 회수 할 수 있어 큰 주목을 받고 있다. NOx의 배출저감을 위한 기술로는 로 내에서의 재연소(reburning), 단계(staging) 연소등이 있으며, 후처리 NOx 저감기술로는 SCR, SNCR등이 있다. 그러나 이러한 기술들은 비용이 비싸다는 단점이 있으며, 미분탄 순산소 연소조건에서는 화염 안정성이 감소하는 문제점이 있다. 따라서 본 연구에서는 화염의 안정성과 밀접한 관련을 가지는 화염전파속도에 대해 미분탄 순산소 연소에서 석탄 입자의 물성치와 주위 기체의 특성이 화염전파속도에 미치는 영향을 수치적 방법을 통하여 해석하였으며, NO 저감의 한 방법인 연소가스 재순환(Flue Gas Recirculation)에 따른 연소특성 및 NO 생성 메커니즘의 영향과 석탄을 가스화 시키는 방법에 따른 연료의 연소특성에 대해 해석하였다.

  • PDF

Measurement and Prediction of Autoignition Temperature(AIT) of n-Propanol and Acetic acid System (노말프로판올과 아세틱에씨드 계의 최소자연발화온도(AIT) 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2017
  • The autoignition temperature (AIT) is crucial combustible characteristics which need attention in chemical process that handle hazardous materials. The AIT, also to as minimum spontaneous ignition temperature(MSIT), is the lowest temperature of a hot surface at which the substance will spontaneously ignite without any obvious sources of ignition such as a spark or flame. The AIT may be used as combustion property to specify operating, storage, and materials handling procedures for process safety. This study measured the AITs of n-propanol+acetic acid system from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-propanol and acetic acid which constituted binary system were $435^{\circ}C$ and $212^{\circ}C$, respectively. The experimental AITs of n-propanol+acetic acid system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation). In the case of n-propanol and acetic acid system, the minimum autoignition temperature behavior (MAITB), which is lower than the lower AIT, is shown among the two pure substances constituting the mixture.

Hydroxyl Radical Measurements in the Flame Using LIF (레이저유도 형광법을 이용한 화염내 OH 농도분포 계측)

  • Lee, Byeong-Jun;Gil, Yong-Seok;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.710-719
    • /
    • 1996
  • Laser applied combustion diagnostic techniques-laser induced fluorescence (LIF) and coherent anti-Stokes Ramann spectroscopy (CARS)-are demonstrated. The profiles of hydroxyl radical (OH) and temperature in the counterflow burner are measured and compared with the numerical results. OH radical is excited on the Q$_1$(6) line of the $A^2$$\sum^+$$\leftarrow$$X^2{\prod}$(1, 0) band transition (281.1 nm) and LIF signal is measured at the the bands of (0, 0) and (1, 1) transition (306~326 nm). Absolute OH radical is obtained by using the laser absorption technique. The quenching effects are considered. Temperature is measured using broadband CARS system. Two dimensional OH radical profile is also obtained. The profiles of OH radical and temperature are found to agree well with those of numerical calculation.

Interaction Between Partially Premixed and Premixed Swirl Flames in a Hybrid/Dual Swirl Jet Combustor (하이브리드/이중 선회제트 연소기에서 부분예혼합-예혼합 선회화염의 상호작용)

  • Jo, Joonik;Hwang, Cheol-Hong;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.7-8
    • /
    • 2012
  • The effects of interaction between partially premixed and premixed swirl flames on CO and NOx emissions were experimentally investigated using a hybrid/dual swirl jet combustor for a micro-gas turbine. Under the condition of constant angle ($45^{\circ}$) for outer swirl vane, the angle and direction of inner swirl vane installed for a partially premixed flame were varied as main parameters with a constant fuel flow rate for each nozzle. It was found that for all conditions, CO and NOx emissions were measured below 4 ppm and 15 ppm at 15% $O_2$, respectively, in a wide range of equivalence ratio (0.6~0.9). For co-swirl flows, CO emission increased dramatically as the angle of inner swirl vane increased from $15^{\circ}$ to $45^{\circ}$ near lean-flammability limit (i.e. equivalence ratio of 0.5). On the other hand, the case of swirl $angle=45^{\circ}$ provided the lowest NOx emission at higher equivalence ratios than 0.6. For counter-swirl flows, the case of swirl $angle=45^{\circ}$ extended the lean-flammability limit but higher NOx emissions were found compared to those of co-swirl flows. These results could be inferred by interaction between (inner) partially premixed and (outer) premixed swirl flames. However, these estimations were not clear yet because there was insufficient data on turbulent flow structure and fuel-air mixing in the present experimental approach.

  • PDF

Soot Formation Characteristics of Concentric Diffusion Flames with Mixture Fuels (이중동축류 화염을 이용한 혼합연료의 매연생성 특성에 관한 연구)

  • Lee, Won-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.123-128
    • /
    • 2002
  • The synergistic effect of ethylene/propane and ethylene/methane mixtures on soot formation is studied experimentally with a concentric co-flow burner. The integrated soot volume fractions, laser light scattering signal and PAH concentrations are measured for different fuel supply configurations. The synergistic effect in ethylene/propane diffusion flames is found to be affected not only by the composition of mixture but also by the way of mixing. Comparing to the homogeneously mixed ethylene/propane case, the increase of soot formation is observed when propane is supplied through the inner nozzle, while the decrease is observed when propane is supplied through the outer nozzle. However, the measured PAH concentration distributions are inconsistent with the current view of the synergistic effect of ethylene./propane mixture on soot formation. Virtually no synergistic effect is observed in ethylene-methane flames regardless of the fuel supply configuration, which suggests the important role of $C_3$ species produced during the propane pyrolysis process for the synergistic effect.

  • PDF

Experimental study on the melting characteristics of pellet fuel for a waste plastic firing boiler (열가소성 폐플라스틱 연소 보일러용 펠렛 연료의 용융특성 실험)

  • Lee, Sung-Soo;Kim, Hyouck-Ju;Choi, Gyu-Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.189-193
    • /
    • 2006
  • Experiments were performed to investigate the melting characteristics of pellet fuel made of LDPE and PP for a waste plastic firing boiler. Pellet fuel in a burner goes through conduction, convection and radiation transferred from flame in a furnace, and complex thermo/chemical processes. To figure out effects of ambient temperature and size of pellet on melting time pellets with a diameter from 5 mm to 40 mm were made to contact high temperature flue gas generated by a LNG firing pilot burner. Though melting processes of plastics include complicated heat transfer in a burner, parameters are limited to flue gas temperature and size for the simplicity in this study. From the results, melting times of LDPE and PP with a diameter of 5mm are 63 and 62 secs respectively at 600 $^{\circ}C$ while 677 and 583 sees respectively for a diameter of 40 mm. At $900^{\circ}C$, melting times of LDPE and PP with a diameter of 5mm are 21 and 24 sees respectively while 408 and 337 secs respectively for a diameter of 40 mm. It is found that melting time of LDPE is longer than that of PP, and melting times of both in general increase with diameter of pellets. It is thought melting is dependent mostly on melting temperature of plastic. It is expected melting times obtained from the study might be taken into account in designing a pellet firing burner for a boiler

  • PDF

The Study Fire Mechanism and Real Fire Correlation of Power Condenser (전력용 콘덴서의 화재메커니즘과 실제 화재상관관계 연구)

  • Baek, Donghyun
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.112-117
    • /
    • 2017
  • This research discusses the correlation about fire mechanism based on real fire cases. Electric power condenser failure mechanism is classified into 7 steps and fire mechanism is classified into 12 steps. In the 5th step, the procedure of operating a protection channel of a protection relay was identical in the case of the failure and fire. As the fire occurrence mechanism was applied from the 6th step, internal pressure was increased because of gas generation produced by internal combustion phenomenon and arc. This caused explosion in 10st step of fire occurrence mechanism. In 11th step, the flame such as arc gushed out with insulating oil which caused fire and leaded to second accident. This kind of step correlation could play an important part to examine fire.

An Experimental Study on the Characteristics of Combustion and Emission in a Gasoline Direct Injection Type HCCI Engine by Controlling Mixture Formation (가솔린 직접분사식 HCCI 엔진의 혼합기 제어에 의한 연소 및 배기 특성에 관한 실험적 연구)

  • 김형민;류재덕;이기형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, there is trade off between output and NOx in a HCCI engine. In this study, output and emission characteristics for a gasoline direct injection type HCCI engine were investigated to clarify the effects of intake air temperature, injection time and mixture formation. From these experiments, we found that the smoke was not produced when the fuel was injected earlier than BTDC 90$^{\circ}$. In addition, the output was increased because of delay of ignition time and NOx emission was decreased because of homogeneous charge of first injection in case of split injection.

Measurement of OH radical spectrum in counterflow burner using degenerate four wave mixing (DFWM(degenerate four wave mixing)을 이용한 대향류버너 화염내의 OH 라디칼 스펙트럼 측정)

  • 이은성;한재원
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.142-149
    • /
    • 1996
  • In non-saturation region, we measured the degenerate four wave mixing spectra of $X^2\;{\Pi}(v=0){\to}A^2{\Sigma}^+(v'=0)$ transition for OH in counterflow burner, which exists transiently in combustion reaction. We used forward box type geometry for phase matching. Calculating the population of each rotational level from the line intensities of R$_1$band and comparing it with Boltzmann distributions, we could obtain the temperatures of the flame at several points. Corrected for the absorption of incident laser fields, the final temperatures coincided with those measured by coherent anti-Stokes Raman Scattering within error $\pm$60 K near 2000 K. We also measured the concentration distribution of OH radical and it was compared to that measured by laser induced fluorescence.

  • PDF