• Title/Summary/Keyword: Combustion behavior

Search Result 526, Processing Time 0.023 seconds

Oxy-combustion Characteristics of Coal and Waste Fuels with the Concentrations of Oxygen and Carbon Dioxide (산소/이산화탄소 농도 변화에 따른 석탄과 폐기물 연료의 순산소 연소 특성)

  • Kang, Sin-Wook;Park, Jeong Min;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.5
    • /
    • pp.473-479
    • /
    • 2017
  • This study was designed to understand characteristics of oxy-combustion of coal, dried sewage sludge and solid refuse fuel (SRF). Thermogravimetric analysis was conducted by burning the fuels with air, 21% oxygen ($O_2$)/79% carbon dioxide ($CO_2$) and 30% $O_2/70%$ $CO_2$. Heating rates were varied as 5, 10, 25, 40 and $100^{\circ}C/min$. Complete coal combustion was found at the heating rates of 5, 10, 25 and $40^{\circ}C/min$, and different combustion behavior was found with the gas composition at the heating rates of 10, 25, 40 and $100^{\circ}C/min$. Coal combustion with 30% $O_2/70%$ $CO_2$ showed the highest while coal combustion with 21% $O_2/79%$ $CO_2$ showed the lowest combustion rate. On the other hand, the combustion of dried sewage sludge and SRF showed similar combustion behavior with respect to the combustion gas composition. This suggests that oxy-combustion of dried sewage sludge and SRF which contain a large amount of volatile matter may show similar combustion behavior to their air combustion.

Experimental Investigation of Burning Pulverized Coal Particles: Emission Analysis and Observation of Particle Sample (연소중 미분탄의 발광 분석 및 입자 채집 관찰)

  • Kim, Dae-Hee;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.19-26
    • /
    • 2010
  • Combustion behavior of pulverized coal particles in a post-combustion gas reactor was investigated. Radiation emission from coal particles were analyzed by direct photograph and $CH^*$ radical chemiluminescence intensity. Coal particles were sampled during the combustion and were observed by scanning electron microscopy (SEM) and cross section micrograpy technique. Two coal types(one bituminous and one subbituminous coals typically used in the Korean power plants) were tested at typical combustion environment. Gas flow conditions were controlled to represent temperature and oxygen concentration. Experimental data were discussed along with conceptual descriptions of pulverized coal combustion, where particle heat-up, release and combustion of volatiles, and char combustion were sequentially progressed.

Chlorine behavior during fluidized bed combustion of RDF (RDF 유동층 연소시 Cl의 거동)

  • Lee, H.M.;Kak, Y.H.;Kim, W.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.137-141
    • /
    • 2001
  • The behavior of Cl is important to prevent HCl exhausted by incineration of RDF. Because RDF is composed of municipal wastes, its calorific value is very various. Thus components of RDF are to be analyzed and elemental analyze and calorific value are to be done. And in order to find the behavior of Cl during RDF combustion, Cl included in exhaust gas and ash is captured and analyzed. RDF which made by municipal and $Ca(OH)_2$ with regular ratio(Ca/0.5Cl) is incinerated in fluidized bed combustor. Cl included in exhaust gas and fly ash is captured and analyzed. Finally the change of Cl concentration included in exhaust gas and ash is analyzed and the behavior of Cl is investigated.

  • PDF

A study on the bed combustion of solid waste (고형 폐기물층 연소에 관한 연구)

  • Sin, Dong-Hun;Choe, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.1-8
    • /
    • 1998
  • Waste combustion above a grate is the core process of incineration systems, stability of which should be guaranteed for emission minimization. However, complicated reactions and heat and mass transfer phenomena make understanding the process difficult. One dimensional bed combustor with a numerical combustion model is utilized to investigate the combustion process of the bed, using cubic wood particles as a simulated fuel. Bed combustion behavior is characterized with apparent flame propagation speed, which has close relationship with air supply rate and chemical and physical characteristics of the fuel. Base on the availability of oxygen, two distinct reaction zone is identified; the oxygen-limited and the reaction-limited zone leading to the extinction by excessive convection cooling. The numerical modeling shows good agreement with the experimental results. The transient bed combustion behavior of local temperature and oxygen consumption rate is adequately reproduced. The numerical model is extended to model the waste bed combustion of a commercial incineration plant, which shows meaningful results as well.

  • PDF

A Experiment of Combustion Behavior of Biomass Fuels (바이오매스 연료의 연소 특성 실험)

  • KIM, HAKDEOK;KIM, YOUNGDAE;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.503-511
    • /
    • 2018
  • There have been many studies of combustion in the circulating fluidized bed. However, little study is available for combustion of wood pellet together fed with wood chip. The mixed ratio of two fuels is an useful information when thermal power company would receive the Renewable Energy Portfolio Standard (RPS) from government. In this study, the combustion behavior and kinetics of such biomass fuels are evaluated using fluidized bed reactor and thermogravimetric analyzers. The mixing ratio of wood chip relative to wood pellet was varied at different temperatures. The results show that a combustion reactivity changed significantly at the wood chip mixing ratio of 40%, particularly at low temperature condition.

THE PARTICLE SIZE EFFECT ON COMBUSTION BEHAVIOR OF CELLULOSE INSULATION

  • Choi, Jeong-Hwa;Kim, Hong;Ryu, Kyong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.185-192
    • /
    • 1997
  • The combustion of cellulose insulation treated with Borax, Boric acid and Aluminum Sulfate as combustion retardants is examined by candle type combustion tester. The cellulose fibers in cellulose insulation are classified by diameter as less than 0.2mm, 0.2mm-0.5mm, 0.5mm-2mm and more than 2mm. The burning behavior of cellulose insulation are studied by LOI (Limit Oxygen Index: Beginning point of smoldering), L- point (Lower point of combustion transition from smoldering- flaming to flaming combustion), LOI, L-point and H-point rise with the increasing particle size of cellulose fibers because thermal decomposition rate of cellulose fiber decreases. The phenomena of combustion transition from smoldering to flaming combustion are determined by the generating rate of combustible gas and the formation rate of combustible gas mixture within the zone of cellulose fiber heated.

  • PDF

An Experimental Study on the Combustion Behavior of Single Coal-Water Slurry Droplet (석탄-물 혼합물 단일액적의 연소 특성에 관한 실험적 연구)

  • 채재우;조용철;전영남;한영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2159-2168
    • /
    • 1992
  • Coal-water slurry is considered to have the potential for displacing petroleum used in the existing oil-fired industrial and utility boilers. The combustion of coal-water slurry(CWS) is a complex process and little is known about the detailed mechanism. In this paper the combustion behavior of a single suspended droplet of CWS in hot gas stream was investigated. The effect of coal particle size, water content in droplet, initial droplet size, ambient temperature and oxygen fraction in ambient gas were studied. The results are as follows; (1) Increasing the oxygen fraction in ambient gas considerably reduced the char combustion time. (2) The variation of water content and coal particle size in droplet showed little effect on the combustion behavior. (3) In the relatively high temperature ambient gas, the water evaporation time became shorter and the combustion process was stable.

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료 분무특성에 관한 실험적 연구)

  • Park, Min-Chul;Oh, Sang-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.42-50
    • /
    • 2001
  • An experimental study has been carried on high-preheated temperature air combustion. Because the flames with high-preheated temperature air combustion were much more stable and homogeneous(both temporally and spatially) as compared to the room-temperature combustion air. The global flame feature showed range of flame colors (yellow, blue, blurish-green) over the range of conditions. Low level of NOx along with low level of CO have been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on preheated temperature and oxygen concentration air.

  • PDF

A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement (PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구)

  • Choi, Inchan;Lee, Keeman;Juddoo, Mrinal;Masri, A.R.
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet (초기 직경이 n-heptane 액적 연소 특성에 미치는 영향)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.