• 제목/요약/키워드: Combustion atmosphere pressure

검색결과 41건 처리시간 0.019초

비예혼합 대향류 화염에서 연소 분위기 압력 영향 연구 (Effects of Combustion Atmosphere Pressure on Non-premixed Counterflow Flame)

  • 이기만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권8호
    • /
    • pp.853-862
    • /
    • 2006
  • The present study is numerically investigated the flame structure of non-premixed counterflow jet flames using the laminar flamelet model Detailed flame structures with the fuel composition of 40% CO, 30% $H_2$. 30% $N_2$ and an oxidizer composition of 79% $N_2$ and 21% $O_2$ in a non-premixed counterflow flame are studied numerically. This study is aimed to investigate the effects of axial velocity gradient and combustion atmosphere pressure on flame structure. The results show that the role of axial velocity gradient on combustion processes is globally opposite to that of combustion atmosphere pressure. That is, chemical nonequilibrium effects become dominant with increasing axial velocity gradient, but are suppressed with increasing ambient pressure. Also, the flame strength is globally weakened by the increase of axial velocity gradient but is augmented by the increase of ambient pressure. However, flame extinction is described better on the basis of only chemical reaction and in this study axial velocity gradient and ambient pressure play a similar role conceptually such that the increase of axial velocity gradient and ambient pressure cause flame not to be extinguished and extend the extinction limit, respectively. Consequently it is suggested that a combustion process like flame extinction is mainly influenced by the competition between the radical formation reaction and the third-body recombination reaction.

연소실 압력변동과 2차 연료 분사가 스월 화염에서 화염안정화와 배출 특성에 미치는 영향 (Influence of changing combustor pressure and secondary fuel injection on flame stabilization and emission characteristic in swirl flame)

  • 김종률;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.133-138
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. $NO_x$ emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion , hence CO emission index increased. These oscillating flames were measured by simultaneous $CH{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

액체로켓의 연소안정을 위한 유량공급에 관한 실험적 연구 (A Study on the Flow Control for Stable Combustion of Liquid Rocket)

  • 장은영;박희호;김선기;김유
    • 한국추진공학회지
    • /
    • 제4권2호
    • /
    • pp.6-11
    • /
    • 2000
  • 고압의 불활성 기체를 이용하여 엔진에 추진제를 공급하는 액체로켓의 경우, 추진제 탱크의 압력은 정상연소상태의 연소압을 기준으로 하여 설계한다. 그러나 연소초기의 연소실 압력은 대기압 상태이므로 과도한 유량이 공급되어 이로 인해 hard-start가 발생하며, 최악의 경우 엔진의 파손을 가져온다. 본 연구에서는 이러한 문제를 해결하고 안정된 연소를 위하여 개선된 추진제 공급시스템을 제안하며, 이는 실제 연소실험을 통해 그 성능을 규명하였다. 이 공급시스템은 연소초기의 급격한 연소실압의 상승을 막기 위하여 추진제를 예연소단계와 주연소단계의 2단계로 공급하며, 연소초기 및 연소 중의 일정한 유량공급을 위해 Cavitating Venturi를 사용하는 시스템이다. 설계 유량보다 적은 양의 추진제를 먼저 공급하여 연소압이 일정수준에 달하도록 예연소압을 형성하게 하는 방법이다. 또한, Cavitating Venturi는 오직 공급압에 의해서만 유량이 결정되며, 출구 압에 영향을 받지 않으므로 연소초기는 물론이고, 연소 중 이상연소에 의해 연소압이 떨어져도 설계치 이상의 유량이 공급되지 않는다.

  • PDF

산업용 가스터빈의 NOx 배출 특성에 관한 연구 (A Study on NOx Emission Characteristics of An Industrial Gas Turbine)

  • 정재모;박정규
    • 한국연소학회지
    • /
    • 제9권1호
    • /
    • pp.11-17
    • /
    • 2004
  • The purposes of this study are to analyze nitrogen oxides(NOx) formation mechanism and to reduce abnormal NOx emissions in gas turbines. Industrial gas turbines emissions have potential to negative affect to the atmosphere in many different ways such as photochemical smog, acid rain and global warming. In conventional gas turbine combustors, one of the main pollutants such as nitrogen oxide(NOx) species, are principally formed from combustion process of fuel with oxygen in the primary combustion zone, and their emission levels are highly depend on peak temperatures in the combustor. In order to examine the characteristics and the effect of NOx formation, we used gas turbine of which commercial operating in Korea. From the examination, it has been found that NOx emissions are relatively high at low load(output) and during combustion mode change. Also, the effect of Air/Fuel ratio was considered. As the Air/Fuel ratio was increased in Lean-Lean mode, the NOx emission was decreased. The results of this study indicated that NOx emission levels are highly depend on peak temperature and pressure of combustion process in the combustor.

  • PDF

바이오디젤-에탄올 혼입연료의 분무 및 연소특성 (Spray and Combustion Characteristics of Biodiesel-Ethanol Blending Fuel)

  • 엄동섭;최연수;조용석;이성욱
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.1-7
    • /
    • 2009
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber by obtaining some fundamental data in order to improve combustion atmosphere. To understand the physics of combustion, high speed camera was applied to visualize the development of combustion processes, and combustion pressure and exhaust emission were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

Fe-금속 산화물 계면에서 연소반응의 유한 요소해석 (Finite Element Analysis of Combustion Reaction on Iron and Metal Oxides Interface)

  • 구문선;최용
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.118.2-118.2
    • /
    • 2017
  • Combustion behavior of Fe, CuO, NiO, ZnO and $Fe_2O_3$ powder mixture was carried out by finite element method (FEM) to understand a reaction at iron and metal oxide interface. The FEM was done by using ANSYS Fluent 17.0. Initial and boundary conditions are 1 atmosphere, room temperature, 0.1MPa of oxygen partial pressure, $T_{S1}=1127^{\circ}C$, $T_{S2}=327^{\circ}C$ for a cylindrical shape specimen with dia. $35{\times}80$ [mm]. The maximum combustion temperature is $1537^{\circ}C$ for the condition of conduction, convection and radiation. The combustion temperature and rate are about $847^{\circ}C$ and 3.9mm/sec, respectively. The combustion wave is enough to make ternary ferrite phase like $CuNiZnFe_2O_3$.

  • PDF

상태방정식을 이용한 주유소 탱크에서의 유증기 배출량 산정법에 관한 연구 (A Study on the Calculation Method of VOCs Emissions Using Equation of State in the Gas Station Tank)

  • 박태준;오휘성;이창언
    • 한국연소학회지
    • /
    • 제20권4호
    • /
    • pp.42-48
    • /
    • 2015
  • This study was investigated the estimation of VOCs (Volatile Organic Compounds) emission from a gas station tank. To improve the atmosphere environmental quality near the gas station, the installation of vapor recovery system has been expanded recently. Therefore, it was necessary to calculate VOCs emissions from the gas station tank with vapor recovery systems for evaluation of their performance. The VOCs emissions are difficult to measure directly because of various sources and irregularly emission by pressure rise. In this study, VOCs emissions were estimated by simple calculation based on the equation of state for measured pressure, temperature and volume of a gasoline tank at a gas station. The result confirmed that the present national emission factor did not have significant discrepancy with the calculated value.

연소실 압력변동이 화염안정화와 배출특성에 미치는 영향 (Influence of changing Combustor Pressure on Flame Stabilization and Emission Charncteristics)

  • 김종률;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2354-2359
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated. The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}$=Pabs/Patm), where Pabs and Patm indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of 0.7${\sim}$1.3 for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. NOx emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion, hence CO emission index increased. These oscillating flames were measured by simultaneous $CH^{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

진공상태에서의 전열현상에 대한 실험적 연구 (Experimental Study of Heat Transfer in Vacuum Furnace)

  • 양제복;김원배;동상근
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.109-113
    • /
    • 2003
  • Low pressure or vacuum carburizing(LPC) has undergone major further developments since 1980 and now it has achieved industrial maturity. The advantage of low pressure vacuum carburizing over gas carburizing is not only the creation of surface entirely free of oxide and environmentally friendly but also a reduction in batch times, lower gas and energy consumption and the prevention of soot. In this study the experiment was carried out to investigate the effects of vacuum atmosphere in the heating furnace. Heat transfer rate and uniformity of temperatures of test samples in the pressure range of a few 0.1torr was examined on a test charge of 100kg. It is found that the fuel saving rate due to decreasing heating time reach to 20% in the vacuum heating mode as compared with atmospheric heating mode. Also the uniformity of temperatures in the samples was improved significantly in the vacuum heating mode. Also the effects of the RC fan for stirring atmosphere inside furnace was examined. Results shows RC fan appears to provide a reasonable tool for improving uniformity of temperature in the atmospheric heating mode.

  • PDF

플래쉬 상평형 계산에 의한 고압 액적기화의 수치적 연구 (High-Pressure Droplet Vaporization with Emphasis on the Vapor-Liquid Equilibrium Calculation)

  • 이강원;채종원;윤웅섭
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.106-118
    • /
    • 2001
  • A rigorous study of single droplet vaporization under quiescent high pressure atmosphere is attempted adopting method of flash evaporation calculation for vapor-liquid equilibrium. Results due to flash method shows excellent agreement with measurement. Also shown is the present model fairly capable of depicting transients of droplet vaporization under high pressure environment, such as ambient gas solubility, property variation, and multicomponent transports. Systematic treatment of these effects with emphasis on vapor-liquid phase equilibrium revealed; conventional treatment for subcritical droplet vaporization, such as $d^2$-law, leads to erroneous prediction of droplet history, augmented gas solubility is significant under supercritical pressure, and vaporization rate proportionally increase with pressure.

  • PDF