• Title/Summary/Keyword: Combustion Modeling

Search Result 349, Processing Time 0.029 seconds

Effects of a Simplified Mixture Nozzle Geometry on the Acoustic Field in an Aero Gas Turbine Combustor (항공용 가스터빈 연소기에서의 혼합기 노즐 형상의 단순화가 음향장 해석 결과에 미치는 영향)

  • Pyo, Yeongmin;Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.58-65
    • /
    • 2019
  • A 3D FEM (Finite Element Method) based Helmholtz solver has been commonly used to characterize fundamental acoustic behavior and investigate dynamic instability features in many combustion systems. In this approach, a geometrical simplification of the target system has been generally made in order to reduce computational time and cost because a real combustor and fuel nozzle have a very complicated flow passage. The feasibility of these simplifications is quantitatively investigated in a small aero gas turbine nozzle in term of acoustic characteristics. It is found that the simplification in a nozzle geometry during the 3D FEM analysis process has no great influence on the acoustic modeling results, while the calculation complexity can be improved for a similar modeling accuracy.

A Study on the Particle Reaction Models for Iron Ore Pellet Induration Process Modeling (철광석 펠릿 소성 공정 모형의 입자 반응 모델 적용에 관한 연구)

  • Ahn, Hyungjun;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.325-326
    • /
    • 2015
  • Combustion of coke grains in a pellet used to be modeled using the shrinking core model in the previous indurator simulations. This leads to the discussions about its propriety due to the fundamental assumptions of the model inconsistent with the particle characteristics. The current study presents the grain model as an improvemen, and the differently used reaction models are compared. In addition, the simulations assuming changed particle conditions are conducted to display the effects of using the grain model.

  • PDF

Process Modeling of an Iron Ore Sintering Bed for Flue Gas Recirculation (배가스 재순환 적용을 위한 제철 소결 베드 프로세스 모델링)

  • Ahn, Hyung-Jun;Choi, Sang-Min;Cho, Byung-Kook
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • In the iron and steel manufacturing, sintering process precedes blast furnace to prepare feed materials by agglomerating powdered iron ore to form larger particles. There are several techniques which have devised to improve sintering production and productivity including flue gas recirculation(FGR) and additive gas enriched operation. The application of those techniques incurs variations of process configurations as well as inlet and outlet gas conditions such as temperature, composition, and flow rate which exert direct influence on reactions in the bed or the operation of the entire plant. In this study, an approach of sintering bed modeling using flowsheet process simulator was devised in consideration of FGR and the change of incoming and outgoing gas conditions. Results of modeling for both normal and FGR sintering process were compared in terms of outgoing gas temperature, concentration, and moisture distribution pattern as well as incoming gas conditions. It is expected to expand the model for various process configurations with FGR, which may provide the usefulness for design and operation of sintering plant with FGR.

Flame Response Modeling for Lean Premixed Combustors Using CFD (CFD를 이용한 희박 예혼합 연소기에서의 연소 응답 모델링)

  • Kim, Daesik;Lee, Jeongwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.773-779
    • /
    • 2014
  • A qualitative and quantitative analysis on flame dynamics is required to model combustion instability characteristics in gas turbine lean premixed combustors. The current paper shows the flame transfer function modeling results using CFD(Computational Fluid Dynamics) techniques for the flame dynamics study. It is generally known that flame shapes determine the basic characteristics of the flame transfer function. The comparisons of the modeled flame shapes with the measured ones were made using the optimized heat transfer conditions. Modeling results of the flame transfer function show the close behaviors to the measured data with a reasonable accuracy if the flame geometry can be exactly captured.

Reaction Zone Thickness of Turbulent Premixed Flame

  • Yamamoto, Kazuhiro;Nishizawa, Yasuki;Onuma, Yoshiaki
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.36-42
    • /
    • 2001
  • Usually, we use the flame thickness and turbulence scale to classify the flame structure on a phase diagram of turbulent combustion. The flame structure in turbulence is still in debate, and many studies have been done. Since the flame motion is rapid and its reaction zone thickness is very thin, it is difficult to estimate the flame thickness. Here, we propose a new approach to determine the reaction zone thickness based on ion current signals obtained by an electrostatic probe, which has enough time and space resolution to detect flame fluctuation. Since the signal depends on the flow condition and flame curvature, it may be difficult to analyze directly these signals and examine the flame characteristics. However, ion concentration is high only in the region where hydrocarbon-oxygen reactions occur, and we can specify the reaction zone. Based on the reaction zone existing, we estimate the reaction zone thickness. We obtain the thickness of flames both in the cyclone-jet combustor and on a Bunsen burner, compared with theoretically predicted value, the Zeldovich thickness. Results show that the experimentally obtained thickness is almost the same as the Zeldovich thickness. It is concluded that this approach can be used to obtain the local flame structure for modeling turbulent combustion.

  • PDF

Laminar Burning Velocities of Propane and Iso-Octane Fuels for Stratified Charged Combustion Modeling (성층화 혼합기 연소 모델링을 위한 프로판 및 이소옥탄 연료의 층류 화염 속도)

  • Pae, Sang-Soo;Kim, Yong-Tae;Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.704-709
    • /
    • 2000
  • Laminar burning velocities of propane- and iso-octane-air mixtures have been numerically modelled over a wide range of equivalence ratio, pressure and temperature. These correlations are applicable to the modelling of stratified charged combustion like that of lean bum and GDI engine combustion. The numerical models are based on the results calculated by PREMIX code with Sloane's detailed chemical reaction mechanism for propane and FlameMaster code with Peters' for iso-octane. Laminar burning velocity for two fuels showed a pressure and temperature dependence in the following form, in the range of $0.1{\sim}4MPa$, and $300{\sim}1000K$, respectively. $S_L={\alpha}\;{\exp}[-\xi({\phi}-{\phi}_m)^2-{\exp}\{-{\xi}({\phi}-{\phi}_m)\}-{\xi}({\phi}-{\phi}_m)]$ where ${\phi}_m=1.07$, and both of ${\alpha}$ and ${\xi}$ are functions of pressure and temperature. Compared with the results of the existing models, those of the present one showed the good agreement of the recent experiment data, especially in the range of lean and rich sides. Judging from the calculated results of the stratified charged combustion by using STAR-CD, the above modelling prove to be more suitable than the other ones.

  • PDF

Development of Combustion Diagnostic System for Reducing the Exhausting Gas (배기가스 저감을 위한 연소진단 시스템의 개발)

  • Lee, Tae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2001
  • A criterion for evaluation of burners has changed recently, and the environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the $NO_x$ and CO regulation. Consequently. 'good burner' means one whose thermal efficiency is high under the constraint of $NO_x$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of $NO_x$ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro- Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro- Fuzzy learning algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of $NO_x$ and CO of the combustion gas was successfully inferred.

  • PDF

Thermodynamic Modeling of Heat Loss and Quenching in a Down Scaled Combustor (형상 축소된 연소기의 열손실 및 소염해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.919-926
    • /
    • 2002
  • Down scaled combustor undergoes increased heat loss that results in incomplete combustion or quenching of the flame as a consequence. Therefore, effect of enhanced heat loss should be understood to design a MEMS scale combustion devices. Existing combustion models are inadequate for micro combustors because they were developed for analysis of regular scale combustor where heat loss can be ignored during the flame propagation. In this research a combustion model is proposed in order to estimate the heat loss and predict quenching limit of flame in a down scaled combustor. Heat loss in the burned region is expressed in a convective form as a product of wall surface area, heat transfer coefficient and temperature difference. Comparison to the measurements showed satisfactory agreement of the pressure and temperature drop. Quenching is accounted for by introducing a correlation of quenching parameter and heat loss. The present model predicted burnt fraction of gases with reasonable accuracy and proved to be applicable in thermal design of a micro combustor.

Large Eddy Simulation of Turbulent Premixed Combustion Flow around Bluff Body based on the G-equation with Dynamic sub-grid model (Dynamic Sub-grid 모델을 이용한 G 방정식에 의한 보염기 주위의 난류 예혼합 연소에 관한 대 와동 모사)

  • Park, Nam-Seob;Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1084-1093
    • /
    • 2010
  • Large eddy simulation of turbulent premixed flame stabilized by the bluff body is performed by using sub-grid scale combustion model based on the G-equation describing the flame front propagation. The basic idea of LES modeling is to evaluate the filtered-front speed, which should be enhanced in the grid scale by the scale fluctuations. The dynamic subgrid scale models newly introduced into the G-equation are validated by the premixed combustion flow behind the triangle flame holder. The calculated results can predict the velocity and temperature of the combustion flow in good agreement with the experiment data.

Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석)

  • 김성구;유용욱;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.